Page 164 - Applied Numerical Methods Using MATLAB
P. 164

FOURIER TRANSFORM  153

             %do_fft (to get Fig. 3.13)
             clear, clf
             w1 = 1.5*pi; w2=3*pi; %two tones
             N = 32; n = [0:N - 1]; T = 0.1; %sampling period
             t = n*T; xan = sin(w1*t) + 0.5*sin(w2*t);
             subplot(421), stem(t,xan,’.’)
             k = 0:N - 1; Xa = fft(xan);
             dscrp=norm(xan-real(ifft(Xa))) %x[n] reconstructible from IFFT{X(k)}?
             subplot(423), stem(k,abs(Xa),’.’)
             %upsampling
             N = 64; n = [0:N - 1]; T = 0.05; %sampling period
             t = n*T; xbn = sin(w1*t)+ 0.5*sin(w2*t);
             subplot(422), stem(t,xbn,’.’)
             k = 0:N - 1; Xb = fft(xbn);
             subplot(424), stem(k,abs(Xb),’.’)
             %zero-padding
             N = 64; n = [0:N-1]; T = 0.1; %sampling period
             ......................


                2                              2
                       x [n]                           x [n]
                        a
                                                        b
                0                              0
               −2                             −2
                 0       1        2  t = nT  3  0        1       2  t = nT  3
                       (a) N = 32, T = 0.1            (b) N = 64, T = 0.05
               30                             30
                     =   2p
                  w 0   : resolution frequency
               20     NT  (fundamental frequency)  20
               10           |X (k)|           10           |X (k)|
                                                             b
                             a
               0                               0
                 02  5       16        27 30    0 2 5        32         59 62
                2                              2
                         x [n]                          x [n]
                                                         d
                         c
                                zero-padding
                0                              0
               −2                             −2
                 0       2       4   t = nT  6  0        2       4  t = nT  6
                       (c) N = 64, T = 0.1            (d) N = 64, T = 0.1

               30                             30
               20                             20
               10           |X (k)|           10            |X (k)|
                                                              d
                              c
               0                               0
                0 5 10       32        54 59    0 5 10       32       54 59
                            Figure 3.13 DFT spectra of a two-tone signal.
   159   160   161   162   163   164   165   166   167   168   169