Page 228 - Applied Numerical Methods Using MATLAB
P. 228
DIFFERENCE APPROXIMATION FOR SECOND AND HIGHER DERIVATIVE 217
Now, we turn our attention to the high-order derivatives. But, instead of deriv-
ing the specific formulas, let’s make an algorithm to generate whatever difference
approximation formula we want. For instance, if we want to get the approxima-
tion formula of the second derivative based on the function values f 2 ,f 1 ,f 0 ,f −1 ,
and f −2 , we write
(2) c 2 f 2 + c 1 f 1 + c 0 f 0 + c −1 f −1 + c −2 f −2
D (x, h) = (5.3.3)
c4 2
h
and take the Taylor series expansion of f 2 ,f 1 ,f −1 ,and f −2 excluding f 0 on the
right-hand side of this equation to rewrite it as
(2)
D (x, h)
c4
(2h) (2h) (2h)
2 3 4
(2) (3) (4)
c 2 f 0 + 2hf + f + f + f +· · ·
0 0 0 0
2 3! 4!
2 3 4
h h h
(2) (3) (4)
+c 1 f 0 + hf + f 0 + f 0 + f 0 +· · · + c 0 f 0
0
1 2 3! 4!
=
2 2 3 4
h h (2) h (3) h (4)
+c −1 f 0 − hf + f 0 − f 0 + f 0 −· · ·
0
2 3! 4!
2 3 4
(2h) (2h) (2h)
(2) (3) (4)
+c −2 f 0 − 2hf + f − f + f
0 0 0 0 − ···
2 3! 4!
(c 2 + c 1 + c 0 + c −1 + c −2 )f 0 + h(2c 2 + c 1 − c −1 − 2c −2 )f
0
2 2
2 1 1 2
2 (2)
+h c 2 + c 1 + c −1 + c −2 f
0
2 2 2 2
1
3 3
= 2 1 1 2 (5.3.4)
2 3 (3)
h +h c 2 + c 1 − c −1 − c −2 f
0
3! 3! 3! 3!
4 4
2 1 1 2 (4)
4
+h c 2 + c 1 + c −1 + c −2 f +· · ·
4! 4! 4! 4!
0
We should solve the following set of equations to determine the coefficients
c 2 ,c 1 ,c 0 ,c −1 ,and c −2 so as to make the expression conform to the second
(2)
derivative f at x + 0h = x.
0
1 1 1 1 1 c 2
0
2 1 0 −1 −2
c 1 0
2 2
2 /2! 1/2! 0 1/2! (5.3.5)
2 /2!
c 0 = 1
3
3 1/3! 0 −1/3! −2 /3! c −1
0
2 /3!
4
4
2 /4! 1/4! 0 1/4! 2 /4! c −2 0