Page 229 - Applied Numerical Methods Using MATLAB
P. 229

218    NUMERICAL DIFFERENTIATION/ INTEGRATION
           Table 5.3 The Difference Approximation Formulas for the First and Second Derivatives

           O(h) forward difference approximation for the first derivative:

                                                f 1 − f 0
                                      D f 1 (x, h) =                     (5.1.4)
                                                  h
               2
           O(h ) forward difference approximation for the first derivative:
                                 2D f 1 (x, h) − D f 1 (x, 2h)  −f 2 + 4f 1 − 3f 0
                       D f 2 (x, h) =                =                   (5.1.5)
                                         2 − 1               2h
           O(h) backward difference approximation for the first derivative:

                                               f 0 − f −1
                                     D b1 (x, h) =                       (5.1.6)
                                                  h
               2
           O(h ) backward difference approximation for the first derivative:
                                 2D b1 (x, h) − D b1 (x, 2h)  3f 0 − 4f −1 + f −2
                       D b2 (x, h) =                =                    (5.1.7)
                                        2 − 1               2h
               2
           O(h ) central difference approximation for the first derivative:
                                               f 1 − f −1
                                     D c2 (x, h) =                       (5.1.8)
                                                  2h
               4
           O(h ) forward difference approximation for the first derivative:
                               2
                              2 D c2 (x, h) − D c2 (x, 2h)  −f 2 + 8f 1 − 8f −1 + f −2
                    D c4 (x, h) =                 =                      (5.1.9)
                                      2
                                     2 − 1                  12h
               2
           O(h ) central difference approximation for the second derivative:
                                    (2)      f 1 − 2f 0 + f −1
                                   D (x, h) =                            (5.3.1)
                                    c2             2
                                                  h
               4
           O(h ) forward difference approximation for the second derivative:
                             (2)
                                       (2)
                           2
                          2 D (x, h) − D (x, 2h)
                 (2)         c2        c2        −f 2 + 16f 1 − 30f 0 + 16f −1 − f −2
                D (x, h) =                     =
                 c4                2                           2
                                  2 − 1                      12h
                                                                         (5.3.2)
               2
           O(h ) central difference approximation for the fourth derivative:
                     (4)      f −2 − 4f −1 + 6f 0 − 4f 1 + f 2
                    D (x, h) =                       (from difapx(4,[-2 2]) (5.3.6)
                     c2
                                        h 4
   224   225   226   227   228   229   230   231   232   233   234