Page 328 - Applied Numerical Methods Using MATLAB
P. 328

PROBLEMS   317
               0.1                              0.1


              0.05                             0.05

                0                                0

             −0.05                            −0.05

              −0.1                             −0.1
                 0     0.5    1     1.5    2      0     0.5    1     1.5    2
                   (a) Eigenvector solutions for BVP2  (b) Eigenvector solutions for BVP4
            Figure P6.11 The eigenvector solutions of homogeneous second-order and fourth-order BVPs.
                        Now, use the routine “bvp2_eig()” with the number of grid points
                      N = 256 to solve the BVP2 (P6.11.7) with x 0 = 0and x f = 2, find
                      the lowest three angular frequencies (ω i ’s) and plot the corresponding
                      eigenvector solutions as depicted in Fig. P6.11a.
                (b) A Homogeneous Fourth-Order BVP to an Eigenvalue Problem
                    Consider an eigenvalue boundary value problem of solving

                                        4
                                       d y    4
                                           − ω y = 0                   (P6.11.9)
                                       dx 4
                                         2
                                                               2
                                        d y                  d y
                          with y(x 0 ) = 0,  (x 0 ) = 0,y(x f ) = 0,  (x f ) = 0
                                        dx 2                 dx 2
                    to find y(x) for x ∈ [x 0 ,x f ] with the (possible) angular frequency ω.
                      In order to use the finite difference method, we divide the solu-
                    tion interval [x 0 ,x f ]into N subintervals to have the grid points x i =
                    x 0 + ih = x 0 + i(x f − x 0 )/N and then, replace the derivatives in the
                    differential equation and the boundary conditions by their finite differ-
                    ence approximations to write


                              y i−2 − 4y i−1 + 6y i − 4y i+1 + y i+2  4
                                                           − ω y i = 0
                                           h 4
                                                                 4
                                                               4
                       y i−2 − 4y i−1 + 6y i − 4y i+1 + y i+2 = λy i (λ = h ω )  (P6.11.10)
                    with
                                    y −1 − 2y 0 + y 1
                           y 0 = 0,              = 0 → y −1 =−y 1    (P6.11.11a)
                                         h 2
                                    y N−1 − 2y N + y N+1
                          y N = 0,                   = 0 → y N+1 =−y N−1
                                           h 2
                                                                     (P6.11.11b)
   323   324   325   326   327   328   329   330   331   332   333