Page 326 - Applied Numerical Methods Using MATLAB
P. 326

PROBLEMS   315
                    with
                                      y 1 − y −1             c 01
                             c 01 y 0 + c 02  = 0 → y −1 = 2h   y 0 + y 1 (P6.11.3a)
                                         2h                  c 02
                                   y N+1 − y N−1                     c f 1
                        c f 1 y N + c f 2     = 0 → y N+1 = y N−1 − 2h  y N
                                       2h                            c f 2
                                                                      (P6.11.3b)
                    Substituting the discretized boundary condition (P6.11.3) into (P6.11.2)
                    yields
                                               (P6.11.3a)
                          y −1 − 2y 0 + y 1 =−λy 0 −−−−−→


                                      c 01
                                2 − 2h    y 0 − 2y 1 = λy 0           (P6.11.4a)
                                      c 02
                          y i−1 − 2y i + y i+1 =−λy i →−y i−1 + 2y i − y i+1 = λy i
                              for  i = 1: N − 1                       (P6.11.4b)
                                                    (P6.11.3b)
                          y N−1 − 2y N + y N+1 =−λy N −−−−−→

                                             c f 1
                            − 2y N−1 + 2 + 2h     y N = λy N          (P6.11.4c)
                                             c f 2
                    which can be formulated in a compact form as

                                       −2    0   0          0            
                          2 − 2hc 01 /c 02                              y 0
                              −1         2  −1    0          0
                                                                         
                                                                      y 1 
                                0       −1    2  −1          0           ·
                                                                         
                                                                         
                                                                         
                                0        0  −1    2        −1
                                                                     y N−1  
                                0        0    0  −2    2 + 2hc f 1 /c f 2  y N
                                   
                                 y 0
                                   
                                y 1 
                                   
                                  ·
                          = λ      
                                   
                               y N−1  
                                 y N
                     Ay = λy;     [A − λI]y = 0                        (P6.11.5)
                    For this equation to have a nontrivial solution y  = 0, λ must be one of
                    the eigenvalues of the matrix A and the corresponding eigenvectors are
                    possible solutions.
   321   322   323   324   325   326   327   328   329   330   331