Page 416 - Applied Numerical Methods Using MATLAB
P. 416

ELLIPTIC PDE  405



             u(x, y)
             100

              50

               0


             −50

            −100
               4
                      3                                                       4
                            2                                        3
                                                             2
                                   1
                              y                     1    x
                                         0  0
                      Figure 9.2 Temperature distribution over a plate—Example 9.1.


            Replacing the first derivative on the left-side boundary (x = x 0 ) by its three-point
            central difference approximation (5.1.8)

             u i,1 − u i,−1
                       ≈ b (y i ),  u i,−1 ≈ u i,1 − 2b (y i ) x  for i = 1, 2,...,M y − 1
                2 x       x 0                   x 0
                                                                         (9.1.8)
            and then substituting this constraint into Eq. (9.1.5a) at the boundary points, we
            have

             u i,0 = r y (u i,1 + u i,−1 ) + r x (u i+1,0 + u i−1,0 ) + r xy (g i,0 u i,0 − f i,0 )

                 = r y (u i,1 + u i,1 − 2b (y i ) x) + r x (u i+1,0 + u i−1,0 ) + r xy (g i,0 u i,0 − f i,0 )
                                  x 0

                 = 2r y u i,1 + r x (u i+1,0 + u i−1,0 ) + r xy (g i,0 u i,0 − f i,0 − 2b (y i )/ x)
                                                               x 0
                    for i = 1, 2,... ,M y − 1                            (9.1.9)
              If the boundary condition on the lower side boundary (y = y 0 )isalsoof
            Neumann type, then we need to write similar equations for j = 1, 2,. ..,M x − 1


              u 0,j = r y (u 0,j+1 + u 0,j−1 ) + 2r x u 1,j + r xy (g 0,j u 0,j − f 0,j − 2b (x j )/ y)
                                                                   y 0
                                                                        (9.1.10)
            and additionally for the left-lower corner point (x 0 ,y 0 ),


            u 0,0 = 2(r y u 0,1 + r x u 1,0 ) + r xy (g 0,0 u 0,0 − f 0,0 − 2(b (y 0 )/ x + 2b (x 0 )/ y))
                                                       x 0          y 0
                                                                        (9.1.11)
   411   412   413   414   415   416   417   418   419   420   421