Page 436 - Applied Numerical Methods Using MATLAB
P. 436

FINITE ELEMENT METHOD (FEM) FOR SOLVING PDE  425


             1                                 1


            0.5                               0.5
                                                       (0.2, 0.5)
             0                                 0
              1                             1   1                            1
                    0               0                0                0
                         −1 −1                             −1 −1
                         (a) f (x, y)                      (b) f (x, y )
                                                              2
                             1

             1                                 1

            0.5                               0.5


             0                                 0
              1                                 1                            1
                                            1
                    0               0                0                0
                         −1 −1                             −1 −1
                             (x, y )                           (x, y )
                         (c) f 3                           (d) f 4


             1                                 4

            0.5                                2


             0                                 0
              1                                 1
                                            1                                1
                    0               0                0                0
                         −1 −1                             −1 −1
                              (x,y )                   (x, y )+2f (x, y)+3f (x, y)
                          (e) f 5                   (f) f 2   3      4
              Figure 9.8 The basis (shape) functions for nodes in Fig. 9.7 and a composite function.


            the coefficient vectors of the basis function for node 2 as

                          
                           −7/10 + (1/2)x + (6/5)y   for subregion S 1
                          
                           −7/16 + (15/16)x + (1/2)y  for subregion S 2
                          
                φ 2 (x, y) =                                            (9.4.18)
                                 0 + 0 · x + 0 · y    for subregion S 3
                          
                          
                                 0 + 0 · x + 0 · y    for subregion S 4
                          
            which turns out to be 1 only at node 2 [i.e., (1,1)] and 0 at all other nodes and on
            the subregions that do not have node 2 as their vertex, as depicted in Fig. 9.8b.
   431   432   433   434   435   436   437   438   439   440   441