Page 172 - Artificial Intelligence for Computational Modeling of the Heart
P. 172

144  Chapter 4 Data-driven reduction of cardiac models






                                             Table 4.4 Parameters in the CRN model.

                            Parameter  Definition                                 Baseline value
                                                       +
                            g Na       Maximal fast inward Na current (I Na ) conductance  7.8 nS/pF
                            g K1       Maximal inward rectifier K  +  current (I K1 ) conductance  0.09 nS/pF
                            g to       Maximal transient outward K  +  current (I to ) conductance  0.1652 nS/pF
                            g Kr       Maximal rapid delayed rectifier K  +  current (I Kr ) conductance 0.0294 nS/pF
                            g Ks       Maximal slow delayed rectifier K  +  current (I Ks ) conductance  0.129 nS/pF
                            g Ca,L     Maximal L-type inward Ca  2+  current (I Ca,L ) conductance  0.1238 nS/pF
                            g b,Ca     Maximal background Ca  2+  current (I b,Ca ) conductance  0.00113 nS/pF
                                                       +
                            g b,Na     Maximal background Na current (I b,Na ) conductance  0.000674 nS/pF
                                               +
                            I NaK(max)  Maximal Na − K  +  pump current (I NaK )  0.60 pA/pF
                                               +
                            I NaCa(max) Maximal Na /Ca  2+  exchanger current (I NaCa )  1600 pA/pF
                            I p,Ca(max)  Maximal sarcoplasmic Ca  2+  pump current (I p,Ca )  0.275 pA/pF
                            g Kur(max)  Scale factor of ultrarapid delayed rectifier K  +  current (I Kur )  1



                                         cellular model [71], described in section 1.2.2. For each location
                                         in the computational domain, the time frame t upstroke in which
                                         action potential generation is triggered is computed using this ap-
                                                                                i
                                         proach. During each following time frame t = t upstroke +i ·dt, with
                                         dt representing the time step used for the numerical solution of
                                         the monodomain equation, the regression cellular model is used
                                         as follows:
                                                  i
                                         dt J ion (x,t ) = v ref (i) − v(x,t i−1 ) ≈ v ref (i) − v ref (i − 1) = dt J ref (i).
                                                                                                (4.6)

                                            Analogously, at the end of the action potential the fully coupled
                                         monodomain problem with MS cellular model is solved, to moni-
                                         tor the generation of AP in the next heart beat.

                                         4.2.2 Experiments and results


                                         4.2.2.1 Model parameter selection and sampling
                                            Without loss of generality, we focus in the following on a subset
                                         of the parameters of the CRN model. More precisely, we consider
                                         12 out of the 35 parameters used by the model, as reported in Ta-
                                         ble 4.4. The rationale behind this choice is that the meta-modeling
                                         approach can be applied regardless of the number of considered
                                         model inputs; moreover, the action potential dynamics produced
   167   168   169   170   171   172   173   174   175   176   177