Page 179 - Artificial Intelligence for Computational Modeling of the Heart
P. 179

Chapter 4 Data-driven reduction of cardiac models 151






                                                      Table 4.5 PPR prediction error.

                                                           M 1       M 2       M 3        M 4
                                               Mean±SD   23.32±16.43 23.25±16.50 0.903±1.214 0.985±1.465
                                     MAD(%)
                                               90-percentile  45.10  45.72      1.749     2.098
                                               Mean±SD   0.86±0.91  0.74±0.85  0.37±0.50  0.67±0.80
                                     V rest (%)
                                               90-percentile  1.83    1.64      0.81      1.42
                                               Mean±SD   3.35±3.59  2.66±3.12  2.88±3.41  2.73±3.31
                                    APD 60 (%)
                                               90-percentile  7.51    6.12      6.59      6.12
                                               Mean±SD   3.56±4.14  2.84± 3.05  2.89±3.52  2.76±2.841
                                    APD 40 (%)
                                               90-percentile  8.30    5.98      6.35      5.61
                                               Mean±SD   5.29±7.02  4.05±4.94  3.72±6.94  3.51±7.47
                                    APD 20 (%)
                                               90-percentile  12.37   8.62      8.06      7.87
                                               Mean±SD   1.70±2.06  1.39±1.55  1.74±2.06  1.26±1.58
                                     AUC(%)
                                               90-percentile  3.65    2.99      3.82      2.70






















                     Figure 4.21. AP regression by PPR.


                     and fused in one surface representing the myocardium. Regional
                     atrial wall thickness is assumed to be uniform. The sino-atrial
                     node region is manually marked in the anatomical model and
                     used to initialize the electrical activation. Computational model-
                     ing of tissue-level electrophysiology is based on the monodomain
                     equation, solved with the lattice-Boltzmann algorithm described
                     in section 2.2.1.
                        As detailed in section 4.2.1.4, the regression cellular model
                     provides a reference action potential v ref as a time sequence
   174   175   176   177   178   179   180   181   182   183   184