Page 364 - Autonomous Mobile Robots
P. 364

354                                    Autonomous Mobile Robots


                                ALGORITHM 9.4
                                Relocation using RANSAC
                                  Relocation_RS (H)
                                  P fail = 0.05,p=3, P g = 0.5
                                  Best = []
                                  i =0
                                  repeat
                                     ˆ z = random_permutation(ˆ z)
                                    RS([], 1)
                                    P g = max(P g , pairings(Best) / m)
                                                        p

                                    t = log P fail / log 1 − P g
                                    i=i+1
                                  until i ≥ t
                                  return Best
                                  procedure RS (H):
                                  {H : current hypothesis}
                                  {i : observation to be matched}
                                  if i > m then
                                    if pairings(H) > pairings(Best) then
                                      Best = H
                                    end if
                                  else if pairings(H) == 3 then
                                     B
                                    x = estimate_location_(H)
                                     R
                                    if joint_compatibility(H) then
                                      JCBB(H, i) { hypothesis verification}
                                    end if
                                  else {branch and bound without star node}
                                    for j=1to n do
                                      if unary(i, j) ∧ binary(i, j, H) then
                                        RS([H j],i+1)
                                      end if
                                    end for
                                  end if




                                9.3.4 Locality

                                As explained in Section 9.3.3,  the main problem of the interpretation tree
                                approach is the exponential number of possible hypotheses (tree leaves):
                                           m
                                N h = (n + 1) . The use of geometric constraints and branch and bound search



                                 © 2006 by Taylor & Francis Group, LLC



                                FRANKL: “dk6033_c009” — 2006/3/31 — 16:43 — page 354 — #24
   359   360   361   362   363   364   365   366   367   368   369