Page 356 - Biaxial Multiaxial Fatigue and Fracture
P. 356

340                            S.  POMMIER

             9.  Savage, S.B.  (1997). Problems in the static and dynamics of granular materials. In: Powder
                and grains, pp. 185-194, Behringer, R.P. and Jenkins, J.T. (Eds.), Balkema, Rotterdam.
             10.  Dantu, P. (1968). Etude statistique des forces intergranulaires dans un milieu pulvkrulent.
                Giotechnique. 18.50-55
             11.  Radjai, F., Wolf, D.E., Roux, S., Jean, M. and Moreau, J.J. (1997). Force networks in
                dense granular media. In: Powder and grains, pp. 21 1-214, Behringer, R.P. and Jenkins,
                J.T.  (Eds.), Rotterdam.
             12.  Roux, J.N. (1997). Contact disorder and nonlinear elasticity of granular packings: A simple
                model. In: Powder and grains, pp. 215-218, Behringer, R.P. and Jenkins, J.T. (Eds.),
                Balkema, Rotterdam.
             13.  Le Biavant, K., Pommier, S. and Prioul, C. (1999), Ghost structure effect on fatigue crack
                initiation and growth in a Ti-6A1-4V alloy. In : Titane 99:Science and technology, pp 48 1-
                487, Goryin, LV. and Ushkov, S.S. (Eds), Saint Petersburg, Russia.
             14. Le Biavant, K., Pommier, S. and Prioul, C. (2002). Local texture and fatigue crack
                initiation in a Ti-6A1-4V Titanium alloy. Fat. Fract. Engng. Mater. Struct 25,527-545.
             15.  Pommier, S. (2002). “Arching” effect in elastic polycrystals. Fat. Fract. Engng. Mater.
                Struct. 25,331-348.



             Appendix : NOMENCLATURE

                                Oxygen Free High Conductivity Copper
                                Finite element method
                                Coordinate systems attached to the grain and to the model
                                Stress tensor as calculated using the FEM in (1,2,3)
                                Schmid factor
                                Maximum resolved shear stress on the slip systems of a crystal

                                Tresca equivalent stress
                                Principal stress
                                Maximum, minimum principal stress components
                                Mean value off
                                Standard deviation off
                                Face centered cubic, body centered cubic, hexagonal close-packed
   351   352   353   354   355   356   357   358   359   360   361