Page 56 - Biaxial Multiaxial Fatigue and Fracture
P. 56

EuaIuation of Fatigue of Fillet Welded Joints in Vehicle Components Under Multiaxial Service Loads  41

            3.  The coarse finite element model is unsuitable for usage in conjunction with the local stress
               approach. Therefore, a submodel of the failure-critical detail has been created here. Due to
               the finer mesh, the number of elements is increasing. The results obtained here show that
               weld geometry optimisation is only possible with the local stress approach.
            4.  In  general, higher numerical expense does only make sense, if  failure-critical locations
               should be investigated more exactly. In the majority of  engineering applications, a finer
               mesh  or  more  detailed  model  is  often  an  unrealisable  option  due  to  technical  and
               commercial reasons.
            5.  To calculate fatigue lives in  accordance with the local stress approach, no experimental
               input data are required, when using the universal local o-N curve.


            REFERENCES

            1.  Hobbacher,  A. (1996).  Recommendations  for  Fatigue  Design  of  Welded  Joints  and
               Components.  Document  Xm- 1539-96/XV-845-96, International  Institute  of  Welding,
               Paris.
            2.  Radaj, D. (1990). Design and Analysis of  Fatigue Resistant Welded Structures. Abingdon
               Publishing Cambridge.
            3.  Radaj,  D.  and  Sonsino,  C.M.  (1998).  Fatigue  Assessment  of Welded Joints  by Local
               Approaches. Woodhead Publishing Limited, Cambrigde.
            4.  Maddox, S.J. (1991). Fatigue strength of  welded  structures, 2"d edition, ISBN  1 85573
               0138, Woodhead Publishing.
            5. Bovet-Griffon, M., Ehrstrom, J.C.,  Courbiere, M.,  Bignonnet, A., Thomas, J.J.,  Puchois,
               J.P.,  Rethery,  S. and  Liennard,  C.  (2001).  Fatigue  assessment  of  welded  automotive
               aluminium  components using  the hot spot  approach. Proc. 8'h INALCO, 28-30.03.2001,
               Munich.
            6.  Fayard, J.L, Bignonnet, A. and Dang Van, K. (1996): Fatigue design criterion for welded
               structures. Fat. Fract. Engng. Mater. Struct. 19,723.
            7. Savaidis, G. and Vormwald, M.  (2000). Hot-spot stress evaluation of  fatigue in welded
               structural connections supported by finite element analysis. Int. J. Fatigue 11, 85.
            8.  Niemi,  E.J.  (1 995).  Recommendations  Concerning  Stress  Determination  for  Fatigue
               Analysis  of  Welded  Components.  Document  XIII- 1458-92KV-797-92,  International
               Institute of Welding, Abingdon Publishing, Cambridge.
            9.  Niemi,  E.J.  (2001). Structural  Stress  Approach  to  Fatigue  Analysis  of  Welded
               Components.  Document  XIII-1819-001XV-1090-Ol~~-WG3-06-99. International
               Institute of Welding, Abingdon Publishing, Cambridge.
            IO. Vormwald, M., Purkert, G. and Schliebner, R. (2000). Lebensduuerbewertung  einer NFG-
               Fahrerhausschwinge mit dem Programm FALANCS. Technical report, Weimar.
            1 1. Sonsino, C.M. (1994). Festigkeitsverhalten von SchweiSverbindungen unter kombinierten
               phasengleichen  und  phasenverschobenen  mehrachsigen  Beanspruchungen.  Material-
               wissenschaft und WerkstofSrechnik  25,353.
            12. Sonsino, C.M. (1995). Multiaxial Fatigue of  Welded Joints Under In-Phase and Out-of-
               Phase Local Strains and Stresses. Int. J. Fatigue 17,55.
            13. N.N.:  FALANCS. Version 2.9j, LMS Durability Technologies GmbH, Kaiserslautern.
            14. Fatemi, A. and Socie D.F. (1988). A critical plane approach to multiaxial fatigue damage
               including out-of-phase loading. Fat. Fruct. Engng. Mater. Struct. 11, 149.
             15. Fatemi, A. and Kurath, P. (1988). Multiaxial fatigue life predictions under the influence of
               mean stresses. J. Engng Mat. Techn. 110,380.
            16. Maddox,  S.J.  and  Ramzjoo,  G.R.  (2001). Interim fatigue design recommendations for
               fillet welded joints under complex loading. Fat. Fruct. Engng. Mater. Struct. 24,329.
   51   52   53   54   55   56   57   58   59   60   61