Page 56 - Biaxial Multiaxial Fatigue and Fracture
P. 56
EuaIuation of Fatigue of Fillet Welded Joints in Vehicle Components Under Multiaxial Service Loads 41
3. The coarse finite element model is unsuitable for usage in conjunction with the local stress
approach. Therefore, a submodel of the failure-critical detail has been created here. Due to
the finer mesh, the number of elements is increasing. The results obtained here show that
weld geometry optimisation is only possible with the local stress approach.
4. In general, higher numerical expense does only make sense, if failure-critical locations
should be investigated more exactly. In the majority of engineering applications, a finer
mesh or more detailed model is often an unrealisable option due to technical and
commercial reasons.
5. To calculate fatigue lives in accordance with the local stress approach, no experimental
input data are required, when using the universal local o-N curve.
REFERENCES
1. Hobbacher, A. (1996). Recommendations for Fatigue Design of Welded Joints and
Components. Document Xm- 1539-96/XV-845-96, International Institute of Welding,
Paris.
2. Radaj, D. (1990). Design and Analysis of Fatigue Resistant Welded Structures. Abingdon
Publishing Cambridge.
3. Radaj, D. and Sonsino, C.M. (1998). Fatigue Assessment of Welded Joints by Local
Approaches. Woodhead Publishing Limited, Cambrigde.
4. Maddox, S.J. (1991). Fatigue strength of welded structures, 2"d edition, ISBN 1 85573
0138, Woodhead Publishing.
5. Bovet-Griffon, M., Ehrstrom, J.C., Courbiere, M., Bignonnet, A., Thomas, J.J., Puchois,
J.P., Rethery, S. and Liennard, C. (2001). Fatigue assessment of welded automotive
aluminium components using the hot spot approach. Proc. 8'h INALCO, 28-30.03.2001,
Munich.
6. Fayard, J.L, Bignonnet, A. and Dang Van, K. (1996): Fatigue design criterion for welded
structures. Fat. Fract. Engng. Mater. Struct. 19,723.
7. Savaidis, G. and Vormwald, M. (2000). Hot-spot stress evaluation of fatigue in welded
structural connections supported by finite element analysis. Int. J. Fatigue 11, 85.
8. Niemi, E.J. (1 995). Recommendations Concerning Stress Determination for Fatigue
Analysis of Welded Components. Document XIII- 1458-92KV-797-92, International
Institute of Welding, Abingdon Publishing, Cambridge.
9. Niemi, E.J. (2001). Structural Stress Approach to Fatigue Analysis of Welded
Components. Document XIII-1819-001XV-1090-Ol~~-WG3-06-99. International
Institute of Welding, Abingdon Publishing, Cambridge.
IO. Vormwald, M., Purkert, G. and Schliebner, R. (2000). Lebensduuerbewertung einer NFG-
Fahrerhausschwinge mit dem Programm FALANCS. Technical report, Weimar.
1 1. Sonsino, C.M. (1994). Festigkeitsverhalten von SchweiSverbindungen unter kombinierten
phasengleichen und phasenverschobenen mehrachsigen Beanspruchungen. Material-
wissenschaft und WerkstofSrechnik 25,353.
12. Sonsino, C.M. (1995). Multiaxial Fatigue of Welded Joints Under In-Phase and Out-of-
Phase Local Strains and Stresses. Int. J. Fatigue 17,55.
13. N.N.: FALANCS. Version 2.9j, LMS Durability Technologies GmbH, Kaiserslautern.
14. Fatemi, A. and Socie D.F. (1988). A critical plane approach to multiaxial fatigue damage
including out-of-phase loading. Fat. Fruct. Engng. Mater. Struct. 11, 149.
15. Fatemi, A. and Kurath, P. (1988). Multiaxial fatigue life predictions under the influence of
mean stresses. J. Engng Mat. Techn. 110,380.
16. Maddox, S.J. and Ramzjoo, G.R. (2001). Interim fatigue design recommendations for
fillet welded joints under complex loading. Fat. Fruct. Engng. Mater. Struct. 24,329.