Page 218 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 218
References 217
[54] J. Lighthill, Acoustic streaming, J. Sound Vib. 61 (3) (1978) 391–418.
[55] P.B. Muller, Acoustofluidics in Microsystems: Investigation of Acoustic Streaming, DTU
Nanotech, Department of Micro-and Nanotechnology, (2012) (Master’s thesis).
[56] B.M. Johnston, P.R. Johnston, S. Corney, D. Kilpatrick, Non-Newtonian blood flow in
human right coronary arteries: steady state simulations, J. Biomech. 37 (5) (2004) 709–
720.
[57] P.B. Muller, H. Bruus, Theoretical aspects of microchannel acoustofluidics: thermovis-
cous corrections to the radiation force and streaming, Proc. IUTAM 10 (2014) 410–415.
[58] H. Bruus, Acoustofluidics 2: perturbation theory and ultrasound resonance modes, Lab
Chip 12 (1) (2012) 20–28.
[59] Y. Jing, T. Wang, G.T. Clement, A k-space method for moderately nonlinear wave propa-
gation, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 59 (8) (2012) 1664–1673.
[60] G.F. Pinton, J. Dahl, S. Rosenzweig, G.E. Trahey, A heterogeneous nonlinear attenuating
full-wave model of ultrasound, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 56 (3)
(2009) 474–488.
[61] Y. Jing, M. Tao, G.T. Clement, Evaluation of a wave-vector-frequency-domain method
for nonlinear wave propagation, J. Acoust. Soc. Am. 129 (1) (2011) 32–46.
[62] I.M. Hallaj, R.O. Cleveland, FDTD simulation of finite-amplitude pressure and tempera-
ture fields for biomedical ultrasound, J. Acoust. Soc. Am. 105 (5) (1999) L7–L12.
[63] J. Gu, Y. Jing, Modeling of wave propagation for medical ultrasound: a review, IEEE
Trans. Ultrasonics Ferroelectr. Freq. Control 62 (11) (2015) 1979–1992.
[64] V.P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys. Acoust. 16 (1971) 467–470.
[65] B. Joshi, A. Joshi, Ultrasound-based drug delivery systems, Bioelectronics and Medical
Devices, Woodhead Publishing, 2019, pp. 241–260.
[66] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and chal-
lenges of liposome assisted drug delivery, Front. Pharmacol. 6 (2015) 286.
[67] V.K. Mourya, N. Inamdar, R.B. Nawale, S.S. Kulthe, Polymeric micelles: general consid-
erations and their applications, Indian J. Pharm. Educ. Res. 45 (2) (2011) 128–138.
[68] A. Joshi, S. Solanki, R. Chaudhari, D. Bahadur, M. Aslam, R. Srivastava, Multifunctional
alginate microspheres for biosensing, drug delivery and magnetic resonance imaging,
Acta Biomater. 7 (11) (2011) 3955–3963.
[69] Z.H. Jin, N. Miyoshi, K. Ishiguro, S.I. Umemura, K.I. Kawabata, N. Yumita, et al. Com-
bination effect of photodynamic and sonodynamic therapy on experimental skin squa-
mous cell carcinoma in C3H/HeN mice, J. Dermatol. 27 (5) (2000) 294–306.
[70] K. Ninomiya, C. Ogino, S. Oshima, S. Sonoke, S.I. Kuroda, N. Shimizu, Targeted sono-
dynamic therapy using protein-modified TiO nanoparticles, Ultrasonics Sonochem. 19
2
(3) (2012) 607–614.
[71] A.K. Wood, C.M. Sehgal, A review of low-intensity ultrasound for cancer therapy, Ultra-
sound Med. Biol. 41 (4) (2015) 905–928.
[72] Z. Gao, J. Zheng, B. Yang, Z. Wang, H. Fan, Y. Lv, H. Li, L. Jia, W. Cao, Sonodynamic
therapy inhibits angiogenesis and tumor growth in a xenograft mouse model, Cancer Lett.
335 (1) (2013) 93–99.
[73] Y. Zheng, Y. Zhang, M. Ao, P. Zhang, H. Zhang, P. Li, L. Qing, Z. Wang, H. Ran, Hema-
toporphyrin encapsulated PLGA microbubble for contrast enhanced ultrasound imaging
and sonodynamic therapy, J. Microencapsul. 29 (5) (2012) 437–444.
[74] B.J. Levenback, C.M. Sehgal, A.K. Wood, Modeling of thermal effects in antivascular
ultrasound therapy, J. Acoust. Soc. Am. 131 (1) (2012) 540–549.