Page 216 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 216
References 215
[16] L.D. Alexander, D.R. Gilman, D.R. Brown, J.L. Brown, P.E. Houghton, Exposure to low
amounts of ultrasound energy does not improve soft tissue shoulder pathology: a system-
atic review, Phys. Ther. 90 (1) (2010) 14–25.
[17] S.A. Sapareto, W.C. Dewey, Thermal dose determination in cancer therapy, Int. J. Radiat.
Oncol. Biol. Phys. 10 (6) (1984) 787–800.
[18] C. Marchal, Clinical trials of ultrasound hyperthermia, Ultrasonics 30 (1992) 139–141.
[19] J.E. Kennedy, G.R. Ter Haar, D. Cranston, High intensity focused ultrasound: surgery of
the future? Br J. Radiol. 76 (909) (2003) 590–599.
[20] Y. Zhou, High-intensity focused ultrasound treatment for advanced pancreatic cancer,
Gastroenterol. Res. Pract. (2014) 2014.
[21] A. Gelet, J.Y. Chapelon, R. Bouvier, O. Rouviere, Y. Lasne, D. Lyonnet, J.M. Dubernard,
Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized
prostate cancer, J. Endourol. 14 (6) (2000) 519–528.
[22] S. Thüroff, C. Chaussy, G. Vallancien, W. Wieland, H.J. Kiel, A. le Duc, et al. High-inten-
sity focused ultrasound and localized prostate cancer: efficacy results from the European
multicentric study, J. Endourol. 17 (8) (2003) 673–677.
[23] B. Larrat, M. Pernot, J.F. Aubry, R. Sinkus, M. Tanter, M. Fink, Radiation force localiza-
tion of HIFU therapeutic beams coupled with magnetic resonance-elastography treat-
ment monitoring in vivo application to the rat brain, in: 2008 IEEE Ultrasonics Sympo-
sium, IEEE, 2008, pp. 451–454.
[24] I.R.S. Makin, T.D. Mast, W. Faidi, M.M. Runk, P.G. Barthe, M.H. Slayton, Miniaturized
ultrasound arrays for interstitial ablation and imaging, Ultrasound Med. Biol. 31 (11)
(2005) 1539–1550.
[25] R. Chopra, K. Tang, M. Burtnyk, A. Boyes, L. Sugar, S. Appu, L. Klotz, M. Bronskill,
Analysis of the spatial and temporal accuracy of heating in the prostate gland using trans-
urethral ultrasound therapy and active MR temperature feedback, Phys. Med. Biol. 54 (9)
(2009) 2615.
[26] S.E. Jung, S.H. Cho, J.H. Jang, J.Y. Han, High-intensity focused ultrasound ablation in
hepatic and pancreatic cancer: complications, Abdominal Imag. 36 (2) (2011) 185–195.
[27] A.Z. Weizer, P. Zhong, G.M. Preminger, New concepts in shock wave lithotripsy, Urol.
Clin. N. Am. 34 (3) (2007) 375–382.
[28] O.A. Sapozhnikov, A.D. Maxwell, B. MacConaghy, M.R. Bailey, A mechanistic analysis
of stone fracture in lithotripsy, J. Acoust. Soc. Am. 121 (2) (2007) 1190–1202.
[29] K.T. Pace, D. Ghiculete, M. Harju, R.J.D.A. HONEY, University of Toronto Lithotripsy
AssociatesShock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-
blind trial, J. Urol. 174 (2) (2005) 595–599.
[30] R.K. Handa, M.R. Bailey, M. Paun, S. Gao, B.A. Connors, L.R. Willis, A.P. Evan, Pre-
treatment with low-energy shock waves induces renal vasoconstriction during standard
shock wave lithotripsy (SWL): a treatment protocol known to reduce SWL-induced renal
injury, BJU Int. 103 (9) (2009) 1270–1274.
[31] S.C. Kim, B.R. Matlaga, W.W. Tinmouth, R.L. Kuo, A.P. Evan, J.A. McAteer, et al. In
vitro assessment of a novel dual probe ultrasonic intracorporeal lithotriptor, J. Urol. 177
(4) (2007) 1363–1365.
[32] G. Lowe, B.E. Knudsen, Ultrasonic, pneumatic and combination intracorporeal litho-
tripsy for percutaneous nephrolithotomy, J. Endourol. 23 (10) (2009) 1663–1668.
[33] Mann, M. W., Palm, M. D., & Sengelmann, R. D. (2008, March). New advances in li-
posuction technology. In Seminars in cutaneous medicine and surgery (Vol. 27, No. 1,
pp. 72-82). WB Saunders.