Page 215 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 215

214    CHAPTER 8  Ultrasound applications in cancer therapy


















                         FIGURE 8.14  Temperature and ablated volume of tissue.


                         References

                          [1] R. Hoogland, Ultrasound Therapy, Enraf Nonius, Delft,  (2005).
                          [2] E. Nussbaum, The influence of ultrasound on healing tissues, J. Hand Ther. 11 (2) (1998)
                             140–147.
                          [3] F. Dunn, L.A. Frizzell, Bioeffects of ultrasound, in: J.F. Lehmann (Ed.), Therapeutic Heat
                             and Cold, Rehabilitation Medicine Library, 1982
                          [4] A. Lenshof, C. Magnusson, T. Laurell, Acoustofluidics 8: applications of acoustophoresis
                             in continuous flow microsystems, Lab Chip 12 (7) (2012) 1210–1223.
                          [5] C.C. Huang, Y.H. Lin, T.Y. Liu, P.Y. Lee, S.H. Wang, Study of the blood coagulation by
                             ultrasound, J. Med. Biol. Eng. 31 (2) (2011) 79–86.
                          [6] R. Libgot-Callé, F. Ossant, Y. Gruel, P. Lermusiaux, F. Patat, High frequency ultrasound
                             device to investigate the acoustic properties of whole blood during coagulation, Ultra-
                             sound Med. Biol. 34 (2) (2008) 252–264.
                          [7] M. Wiklund, H. Brismar, B. Önfelt, Acoustofluidics 18: microscopy for acoustofluidic
                             micro-devices, Lab Chip 12 (18) (2012) 3221–3234.
                          [8] W.G. Pitt, G.A. Husseini, B.J. Staples, Ultrasonic drug delivery–a general review, Expert
                             Opin. Drug Deliv. 1 (1) (2004) 37–56.
                          [9] J. Friend, L.Y. Yeo, Microscale acoustofluidics: microfluidics driven via acoustics and
                             ultrasonics, Rev. Modern Phys. 83 (2) (2011) 647.
                         [10] C.C. Chen, P.S. Sheeran, S.Y. Wu, O.O. Olumolade, P.A. Dayton, E.E. Konofagou, Tar-
                             geted drug delivery with focused ultrasound-induced blood-brain barrier opening using
                             acoustically-activated nanodroplets, J. Control. Release 172 (3) (2013) 795–804.
                         [11] C.C. Coussios, R.A. Roy, Applications of acoustics and cavitation to noninvasive therapy
                             and drug delivery, Annu. Rev. Fluid Mech. 40 (2008) 395–420.
                         [12] D.L. Miller, N.B. Smith, M.R. Bailey, G.J. Czarnota, K. Hynynen, I.R.S. Makin, Bioef-
                             fects Committee of the American Institute of Ultrasound in MedicineOverview of thera-
                             peutic ultrasound applications and safety considerations, J. Ultrasound Med. 31 (4)
                             (2012) 623–634.
                         [13] J.F. Lehmann, The biophysical basis of biologic ultrasonic reactions with special refer-
                             ence to ultrasonic therapy, Arch. Phys. Med. Rehabil. 34 (3) (1953) 139.
                         [14] K.G. Baker, V.J. Robertson, F.A. Duck, A review of therapeutic ultrasound: biophysical
                             effects, Phys. Ther. 81 (7) (2001) 1351–1358.
                         [15] L. Machet, A. Boucaud, Phonophoresis: efficiency, mechanisms and skin tolerance, Int.
                             J. Pharmaceut. 243 (1–2) (2002) 1–15.
   210   211   212   213   214   215   216   217   218   219   220