Page 219 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 219

218    CHAPTER 8  Ultrasound applications in cancer therapy




                         [75] C.H. Heath, A. Sorace, J. Knowles, E. Rosenthal, K. Hoyt, Microbubble therapy enhances
                             anti-tumor properties of cisplatin and cetuximab in vitro and in vivo, Otolaryngol.–Head
                             Neck Surg. 146 (6) (2012) 938–945.
                         [76] Y. Watanabe, A. Aoi, S. Horie, N. Tomita, S. Mori, H. Morikawa, Y. Matsumura, G. Vas-
                             saux, T. Kodama, Low-intensity ultrasound and microbubbles enhance the antitumor ef-
                             fect of cisplatin, Cancer Sci. 99 (12) (2008) 2525–2531.
                         [77] J. Kang, X. Wu, Z. Wang, H. Ran, C. Xu, J. Wu, Z. Wang, Y. Zhang, Antitumor effect
                             of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble
                             activation on VX2 rabbit liver tumors, J. Ultrasound Med. 29 (1) (2010) 61–70.
                         [78] S.A. Peyman, R.H. Abou-Saleh, S.D. Evans, Research spotlight: microbubbles for thera-
                             peutic delivery, Therapeut. Deliv. 4 (5) (2013) 539–542.
                         [79] B.J. Staples, W.G. Pitt, B.L. Roeder, G.A. Husseini, D. Rajeev, G.B. Schaalje, Distribu-
                             tion of doxorubicin in rats undergoing ultrasonic drug delivery, J. Pharmaceut. Sci. 99 (7)
                             (2010) 3122–3131.
                         [80] S. Ibsen, M. Benchimol, D. Simberg, S. Esener, Ultrasound mediated localized drug de-
                             livery, in: Nano-Biotechnology for Biomedical and Diagnostic Research, Springer, Dor-
                             drecht, 2012, pp. 145–153.
                         [81] Y.Z. Zhao, D.D. Dai, C.T. Lu, H.F. Lv, Y. Zhang, X. Li, et al. Using acoustic cavitation
                             to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo, Drug Dev.
                             Ind. Pharm. 38 (9) (2012) 1090–1098.
                         [82] J. Owen, Q. Pankhurst, E. Stride, Magnetic targeting and ultrasound mediated drug deliv-
                             ery: benefits, limitations and combination, Int. J. Hypertherm. 28 (4) (2012) 362–373.
                         [83] Y.Z. Zhao, L.N. Du, C.T. Lu, Y.G. Jin, S.P. Ge, Potential and problems in ultrasound-
                             responsive drug delivery systems, Int. J. Nanomed. 8 (2013) 1621.
                         [84] C. Niu, Z. Wang, G. Lu, T.M. Krupka, Y. Sun, Y. You, et al. Doxorubicin loaded super-
                             paramagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR im-
                             aging and therapy of metastasis in lymph nodes, Biomaterials 34 (9) (2013) 2307–2317.
                         [85] Q. Tang, X. He, H. Liao, L. He, Y. Wang, D. Zhou, et al. Ultrasound microbubble contrast
                             agent–mediated suicide gene transfection in the treatment of hepatic cancer, Oncol. Lett.
                             4 (5) (2012) 970–972.
                         [86] F. Li, L. Jin, H. Wang, F. Wei, M. Bai, Q. Shi, L. Du, The dual effect of ultrasound-tar-
                             geted microbubble destruction in mediating recombinant adeno-associated virus delivery
                             in renal cell carcinoma: transfection enhancement and tumor inhibition, J. Gene Med. 16
                             (1–2) (2014) 28–39.
                         [87] A. Joshi, J. Kaur, R. Kulkarni, R. Chaudhari, In-vitro and ex-vivo evaluation of raloxifene
                             hydrochloride delivery using nano-transfersome based formulations, J. Drug Deliv. Sci.
                             Technol. 45 (2018) 151–158.
                         [88] E. Unger, T. Porter, J. Lindner, P. Grayburn, Cardiovascular drug delivery with ultrasound
                             and microbubbles, Adv. Drug Deliv. Rev. 72 (2014) 110–126.
                         [89] H.P. Kok, A.N.T.J. Kotte, J. Crezee, Planning, optimisation and evaluation of hyperther-
                             mia treatments, Int. J. Hypertherm. 33 (6) (2017) 593–607.
                         [90] M.S. Adams, S.J. Scott, V.A. Salgaonkar, G. Sommer, C.J. Diederich, Thermal therapy of
                             pancreatic tumours using endoluminal ultrasound: parametric and patient-specific model-
                             ling, Int. J. Hypertherm. 32 (2) (2016) 97–111.
                         [91] S. Karimi, M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, P. Jalali, Effect of rheological
                             models on the hemodynamics within human aorta: CFD study on CT image-based geom-
                             etry, J. Non-Newton. Fluid Mech. 207 (2014) 42–52.
                         [92] H. Azhari, Doppler Imaging Techniques, 2010.
   214   215   216   217   218   219   220   221   222   223   224