Page 220 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 220
CHAPTER
Application of microfluidics
in cancer treatment 9
Chapter outline
9.1 Introduction ...................................................................................................... 219
9.1.1 Surface acoustic waves ...................................................................220
9.1.2 Generation of SAW-induced streaming .............................................222
9.1.3 Application of SAW ........................................................................223
9.2 Microfluidic system ........................................................................................... 225
9.2.1 Microfluidic devices .......................................................................227
9.3 Microfluidic systems in cancer .......................................................................... 233
9.4 Governing equations .......................................................................................... 238
9.4.1 Equations of perturbation theory caused by the acoustic field .............239
9.4.2 Second-order equations ..................................................................240
9.5 Acoustophoretic motion of particles in a PDMS microchannel using SAW ............. 241
9.5.1 Streamlines ...................................................................................242
9.5.2 The acoustic streaming V2 ..............................................................242
9.5.3 Pressure........................................................................................243
9.5.4 Intensity .......................................................................................243
9.5.5 Force ............................................................................................244
9.5.6 Motion of particles .........................................................................244
References .............................................................................................................. 245
9.1 Introduction
Microfluidic technology can precisely control and manipulate a small amount of fluid
on the microscale, typically submillimeter in a confined and limited environment. It
integrates multiple processes into a small chip that normally requires a lot of labora-
tory equipment [1,2]. Multidisciplinary field such as engineering, physics, chemistry,
biochemistry, nanotechnology, and biotechnology joints together to design systems in
which low volumes of fluids are processed to achieve multiplexing, automation and
high-throughput screening. A microfluidic platform provides a set of fluidic unit oper-
ations that is done for an easy combination within a well-defined fabrication technol-
ogy. Microfluidic platform clears a generic and continuous way for miniaturization,
integration, automation, and parallelization of biochemical processes [3]. To reach a
small volume of liquids, micropumps generate a flow to circulate liquids on an artifi-
cially constructed channel of various geometries (microchip) [4]. Also micromixers
Bio-Engineering Approaches to Cancer Diagnosis and Treatment. http://dx.doi.org/10.1016/B978-0-12-817809-6.00009-1 219
Copyright © 2020 Elsevier Inc. All rights reserved.