Page 220 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 220

CHAPTER


                  Application of microfluidics

                  in cancer treatment                                        9







                  Chapter outline
                  9.1  Introduction ...................................................................................................... 219
                     9.1.1  Surface acoustic waves ...................................................................220
                     9.1.2  Generation of SAW-induced streaming .............................................222
                     9.1.3  Application of SAW ........................................................................223
                  9.2  Microfluidic system ........................................................................................... 225
                     9.2.1  Microfluidic devices .......................................................................227
                  9.3  Microfluidic systems in cancer .......................................................................... 233
                  9.4  Governing equations .......................................................................................... 238
                     9.4.1  Equations of perturbation theory caused by the acoustic field .............239
                     9.4.2  Second-order equations ..................................................................240
                  9.5  Acoustophoretic motion of particles in a PDMS microchannel using SAW ............. 241
                     9.5.1  Streamlines ...................................................................................242
                     9.5.2  The acoustic streaming V2 ..............................................................242
                     9.5.3  Pressure........................................................................................243
                     9.5.4  Intensity .......................................................................................243
                     9.5.5  Force ............................................................................................244
                     9.5.6  Motion of particles .........................................................................244
                  References .............................................................................................................. 245



                  9.1  Introduction
                  Microfluidic technology can precisely control and manipulate a small amount of fluid
                  on the microscale, typically submillimeter in a confined and limited environment. It
                  integrates multiple processes into a small chip that normally requires a lot of labora-
                  tory equipment [1,2]. Multidisciplinary field such as engineering, physics, chemistry,
                  biochemistry, nanotechnology, and biotechnology joints together to design systems in
                  which low volumes of fluids are processed to achieve multiplexing, automation and
                  high-throughput screening. A microfluidic platform provides a set of fluidic unit oper-
                  ations that is done for an easy combination within a well-defined fabrication technol-
                  ogy. Microfluidic platform clears a generic and continuous way for miniaturization,
                  integration, automation, and parallelization of biochemical processes [3]. To reach a
                  small volume of liquids, micropumps generate a flow to circulate liquids on an artifi-
                  cially constructed channel of various geometries (microchip) [4]. Also micromixers

                  Bio-Engineering Approaches to Cancer Diagnosis and Treatment. http://dx.doi.org/10.1016/B978-0-12-817809-6.00009-1  219
                  Copyright © 2020 Elsevier Inc. All rights reserved.
   215   216   217   218   219   220   221   222   223   224   225