Page 217 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 217
216 CHAPTER 8 Ultrasound applications in cancer therapy
[34] S. Tinkov, R. Bekeredjian, G. Winter, C. Coester, Microbubbles as ultrasound triggered
drug carriers, J. Pharmaceut. Sci. 98 (6) (2009) 1935–1961.
[35] K. Ferrara, R. Pollard, M. Borden, Ultrasound microbubble contrast agents: fundamentals
and application to gene and drug delivery, Annu. Rev. Biomed. Eng. 9 (2007) 415–447.
[36] K. Kieran, T.L. Hall, J.E. Parsons, J.S. Wolf, J.B. Fowlkes, C.A. Cain, W.W. Roberts,
Refining histotripsy: defining the parameter space for the creation of nonthermal lesions
with high intensity, pulsed focused ultrasound of the in vitro kidney, J. Urol. 178 (2)
(2007) 672–676.
[37] Z. Xu, M. Raghavan, T.L. Hall, M.A. Mycek, J.B. Fowlkes, C.A. Cain, Evolution of
bubble clouds induced by pulsed cavitational ultrasound therapy-histotripsy, IEEE Trans.
Ultrasonics Ferroelectr Freq. Control 55 (5) (2008) 1122–1132.
[38] M.S. Canney, V.A. Khokhlova, O.V. Bessonova, M.R. Bailey, L.A. Crum, Shock-induced
heating and millisecond boiling in gels and tissue due to high intensity focused ultra-
sound, Ultrasound Med. Biol. 36 (2) (2010) 250–267.
[39] J.H. Hwang, J. Tu, A.A. Brayman, T.J. Matula, L.A. Crum, Correlation between iner-
tial cavitation dose and endothelial cell damage in vivo, Ultrasound Med. Biol. 32 (10)
(2006) 1611–1619.
[40] R.J. Siegel, H. Luo, Ultrasound thrombolysis, Ultrasonics 48 (4) (2008) 312–320.
[41] K.E. Hitchcock, C.K. Holland, Ultrasound-assisted thrombolysis for stroke therapy: bet-
ter thrombus break-up with bubbles, Stroke 41 (10 (Suppl 1)) (2010) S50–S53.
[42] Y. Tufail, A. Matyushov, N. Baldwin, M.L. Tauchmann, J. Georges, A. Yoshihiro, S.I.
Helms Tillery, W.J. Tyler, Transcranial pulsed ultrasound stimulates intact brain circuits,
Neuron 66 (5) (2010) 681–694.
[43] E.S. Ebbini, G. Ter Haar, Ultrasound-guided therapeutic focused ultrasound: current sta-
tus and future directions, Int. J. Hypertherm. 31 (2) (2015) 77–89.
[44] J. Ventura, K.H. Nuechterlein, J.P. Hardesty, M. Gitlin, Life events and schizophrenic
relapse after withdrawal of medication, Br. J. Psychiatry 161 (5) (1992) 615–620.
[45] R. Mettin, A.A. Doinikov, Translational instability of a spherical bubble in a standing
ultrasound wave, Appl. Acoust. 70 (10) (2009) 1330–1339.
[46] J. Rooze, E.V. Rebrov, J.C. Schouten, J.T. Keurentjes, Dissolved gas and ultrasonic cavi-
tation—a review, Ultrasonics Sonochem. 20 (1) (2013) 1–11.
[47] M. Wiklund, Acoustofluidics 12: Biocompatibility and cell viability in microfluidic
acoustic resonators, Lab Chip 12 (11) (2012) 2018–2028.
[48] J. Wang, J. Dual, Theoretical and numerical calculation of the acoustic radiation force
acting on a circular rigid cylinder near a flat wall in a standing wave excitation in an ideal
fluid, Ultrasonics 52 (2) (2012) 325–332.
[49] E. VanBavel, Effects of shear stress on endothelial cells: possible relevance for ultrasound
applications, Prog. Biophys. Mol. Biol. 93 (1–3) (2007) 374–383.
[50] T.G. Jensen, Acoustic Radiation in Microfluidic Systems (Doctoral dissertation, Master’s
thesis), Technical University of Denmark, Department of Micro and Nano Technology,
2007.
[51] M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous
fluid, Phys. Rev. E 85 (1) (2012) 016327.
[52] G. Destgeer, K.H. Lee, J.H. Jung, A. Alazzam, H.J. Sung, Continuous separation of par-
ticles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW), Lab
Chip 13 (21) (2013) 4210–4216.
[53] P.B. Muller, M. Rossi, A.G. Marin, R. Barnkob, P. Augustsson, T. Laurell, C.J. Kähler,
H. Bruus, Ultrasound-induced acoustophoretic motion of microparticles in three dimen-
sions, Phys. Rev. E 88 (2) (2013) 023006.