Page 115 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 115
92 BIOMECHANICS OF THE HUMAN BODY
Berman, H. J., and Fuhro, R. L., “Effect of rate of shear on the shape of the velocity profile and orientation of
red blood cells in arterioles,” Bibl. Anat., 10:32–37, 1969.
Berman, H. J., Aaron, A., and Behrman, S., “Measurements of red blood cell velocity in small blood vessels.
A comparison of two methods: high-speed cinemicrography and stereopairs.” Microvas. Res., 23:242, 1982.
Bluestein, D., and Einav, S., “Spectral estimation and analysis of LDA data in pulsatile flow through heart
valves,” Experiments in Fluids, 15:341–353, 1993.
Bluestein, D., and Einav, S., “Transition to turbulence in pulsatile flow through heart valves: A modified stability
approach,” J. Biomech. Eng., 116:477–487, 1994.
Caro, C. G., Pedley T. J., Schroter R. C., and Seed, W. A., The Mechanics of the Circulation. Oxford University
Press, Oxford, 1978.
Casson, M., in Rheology of Dispersive Systems, C. C. Mills, ed., Pergamon Press, Oxford, 1959.
Chandran, K. B., “Flow dynamics in the human aorta: Techniques and applications,” in Cardiovascular
Techniques, C. Leondes, ed., CRC Press, Boca Raton, Florida, Chap. 5, 2001.
−1
Charm, S. E., and Kurland, G. S., “Viscometry of human blood for shear rates of 0–100,000 sec ,” Nature,
206:617–618, 1965.
Clark, J. W., Ling, R. Y., Srinivasan, R., Cole, J. S., and Pruett, R. C., “A two-stage identification scheme for the
determination of the parameters of a model of left heart and systemic circulation,” IEEE Trans. Biomed. Eng.,
27:20–29, 1980.
Cokelet, G. R., “Rheology and hemodynamics,” Ann. Rev. Physiol., 42:311–324, 1980.
Conrad, W. A., “Pressure-flow relationships in collapsible tubes,” IEEE Trans. Biomed. Eng., 16:284–295, 1969.
Dawson, S. V., and Elliott E. A., “Wave-speed limitation on expiratory flow: A unifying concept,” J. Appl.
Physiol., 43:498–515, 1977.
Dawson, T. H., Engineering Design of the Cardiovascular System of Mammals, Prentice Hall, Englewood Cliffs,
N. J., 1991.
Dinnar, U., Cardiovascular Fluid Dynamics, CRC Press, Boca Raton, Florida, 1981.
Einav, S., and Berman, H. J., “Fringe mode transmittance laser Doppler microscope anemometer. Its adaptation
for measurement in the microcirculation,” J. Biomech. Eng., 10:393–399, 1988.
Einav, S., and Sokolov, M., “An experimental study of pulsatile pipe flow in the transition range,” J. Biomech.
Eng., 115:404–411, 1993.
Elad, D., Sahar, M., Avidor, J. M., and Einav, S., “Steady flow through collapsible tubes: measurement of flow
and geometry,” J. Biomech. Eng., 114:84–91, 1992.
Elad, D., Kamm., R. D., and Shapiro, A. H., “Steady compressible flow in collapsible tubes: Application to forced
expiration,” J. Fluid. Mech., 203:401–418, 1989.
Flaherty, J. E., Keller, J. B., and Rubinow, S. I., “Post buckling behavior of elastic tubes and rings with opposite
sides in contact,” SIAM J. Appl. Math., 23:446–455, 1972.
Fung, Y. C., Biodynamics: Circulation, Springer-Verlag, New York, 1984.
Guyton, A. C., and Hall J. E., Textbook of Medical Physiology, 9th ed., W. B. Saunders, Philadelphia, 1996.
Henderson, Y., and Johnson, F. E., “Two models of closure of the heart valves,” Heart, 4:69, 1912.
Hoffman, H. E., Baer R. W., Hanley, F. L., Messina, L. M., and Grattan, M. T., “Regulation of transmural myocardial
blood flow,” J. Biomech. Eng., 107:2–9, 1985.
Holt, J. P., “Flow through collapsible tubes and through in situ veins,” IEEE Trans. Biomed. Eng., 16:274–283, 1969.
Kajiya, F., Klassen, G. A., Spaan, J. A. E., and Hoffman J. I. E., Coronary circulation. Basic mechanism and
clinical relevance, Springer, Tokyo, 1990.
Kamm, R. D., “Bioengineering studies of periodic external compression as prophylaxis against deep vein
thrombosis—Part I: Numerical studies; Part II: Experimental studies on a stimulated leg,” J. Biomech. Eng.,
104:87–95 and 96–104, 1982.
Kamm, R. D., and Pedley, T. J., “Flow in collapsible tubes: a brief review,” J. Biomech. Eng., 111:177–179, 1989.
Kleinstreuer, C., Lei, M., and Archie, J. P., “Hemodynamics simulations and optimal computer-aided designs of
branching blood vessels,” in Biofluid Methods in Vascular and Pulmonary Systems, C. Leondes, ed., CRC
Press, Boca Raton, Florida, Chap. 1, 2001.
Krams, R., Sipkema, P., Zegers, J., and Westerhof, N., “Contractility is the main determinant of coronary systolic
flow impediment,” Am. J. Physiol.: Heart Circ. Physiol., 257:H1936–H1944, 1989.