Page 116 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 116
PHYSICAL AND FLOW PROPERTIES OF BLOOD 93
Ku, D. N., and Giddens, D. P., “Laser Doppler anemometer measurements of pulsatile flow in a model carotid
bifurcation,” J. Biomech., 20:407–421, 1987.
Le-Cong, P., and Zweifach, B. W., “In vivo and in vitro velocity measurements in microvasculature with a laser,”
Microvasc. Res., 17:131–141, 1979.
Lieber, B. B., and Giddens, D. P., “Apparent stresses in disturbed pulsatile flow,” J. Biomechanics, 21:287–298,
1988.
Liepsch, D., “Fundamental flow studies in models of human arteries,” Front. Med. Biol. Eng., 5:51–55, 1993.
Liepsch, D., Poll, A., Strigberger, J., Sabbah, H. N., and Stein, P. D., “Flow visualization studies in a mold of the
normal human aorta and renal arteries,” J. Biomech. Eng., 111:222–227, 1989.
Martini, F. H., Fundamentals of Anatomy and Physiology. Prentice Hall, Englewood Cliffs, N. J., 1995.
Mazumdar, J. N., Biofluid Mechanics, World Scientific Pub., Singapore, 1992.
McDonald, D. A., The relation of pulsatile pressure to flow in arteries. J. Physiol, 127:533–552, 1955.
McMahon, T. A., Clark, C., Murthy, V. S., and Shapiro, A. H., “Intra-aortic balloon experiments in a lumped-
element hydraulic model of the circulation,” J. Biomech., 4:335–350, 1971.
Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J., Braunwald, E., and Shillingford, J. P., “Pressure-flow
relationships and vascular impedance in man,” Cardiovasc. Res., 4:405–417, 1970.
Moreno, A. H., Katz, I. A., Gold, L. D., Reddy, R. V., “Mechanics of distension of dog veins and other very
thin-walled tubular structures,” Circ. Res., 27:1069–1080, 1970.
Nerem, R. M., and Rumberger, J. A., “Turbulance in blood flow,” Recent Adv. Eng. Sci., 7:263–272, 1976.
Nichols, W. W., O’Rourke, M. F., McDonald’s Blood Flow in Arteries: Theoretical, experimental, and clinical
principles, Arnold, London, 1998.
Olansen, J. B., Clark, J. W., Khoury, D., Ghorbel, F., and Bidani, A., “A closed-loop model of the canine cardio-
vascular system that includes ventricular interaction,” Comput. Biomed. Res., 33:260–295, 2000.
Pedley, T. J., Schroter, R. C., and Sudlow, M. F., “Flow and pressure drop in systems of repeatedly branching
tubes,” J. Fluid Mech., 46:365–383, 1971.
Pedley, T. J., The Fluid Mechanics of Large Blood Vessels, Cambridge University Press: Cambridge, U.K., 1980.
Pedley, T. J., “High Reynolds number flow in tubes of complex geometry with application to wall shear stress in
arteries,” Symp. Soc. Exp. Biol., 49:219–241, 1995.
Perktold, K., and Rappitsch, G., “Computer simulation of local blood flow and vessel mechanics in a compliant
carotid artery bifurcation model,” J. Biomech., 28:845–856, 1995.
Pinchak, A. C., and Ostrach, S., “Blood flow in branching vessels,” J. Appl. Physiol., 41:646–658, 1976.
Ripplinger, C. M., Ewert, D. L., and Koenig, S. C., “Toward a new method of analyzing cardiac performance,”
Biomed. Sci. Instrum., 37:313–318, 2001.
Saladin, K. S., Anatomy and Physiology: The Unity of Form and Function, 2d ed., McGraw-Hill, New York 2001.
Sauob, S. N., Rosenfeld, M., Elad, D., and Einav, S., “Numerical analysis of blood flow across aortic valve
leaflets at several opening angles,” Int. J. Cardiovasc. Med. Sci., 2:153–160, 1999.
Shapiro, A. H., “Steady flow in collapsible tubes,” J. Biomech. Eng., 99:126–147, 1977.
Thibodeau, G. A., Patton, K. T., Anatomy and Physiology. 4th ed., Mosby, St Louis, 1999.
Thiriet, M., Naili, S., Langlet, A., and Ribreau, C., “Flow in thin-walled collapsible tubes,” in Biofluid Methods
in Vascular and Pulmonary Systems, C. Leondes, ed., CRC Press, Boca Raton, Florida, Chap. 10, 2001.
Van der Tweel, L. H., “Some physical aspects of blood pressure pulse wave, and blood pressure measurements,”
Am. Heart J., 53:4–22, 1957.
Westerhof, N., and Stergiopulos, N., “Models of the arterial tree,” Stud. Health Technol. Inform., 71:65–77, 2000.
Whitmore, R. L., Rheology of the Circulation, Pergamon Press, Oxford, 1968.
Womersley, J. R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the
pressure gradient is known,” J. Physiol., 127:553–563, 1955a.
Womersley, J. R., “Oscillatory motion of a viscous liquid in a thin-walled elastic tube: I. The linear approximation
for long waves,” Philosophical Magazine, Ser. 7, 46:199–221, 1955b.
Yamaguchi, T., Parker K. H., “Spatial characteristics of turbulence in the aorta,” Ann. N. Y. Acad. Sci.,
404:370–373, 1983.
Zamir, M., The Physics of Pulsatile Flow, Springer, New York, 2000.