Page 215 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 215

192  BIOMECHANICS OF THE HUMAN BODY

                       Jensen, R. H., and Davy, D. T. (1975). An investigation of muscle lines of action about the hip: A centroid line
                         approach vs the straight line approach. Journal of Biomechanics. 8:103–110.
                       Kane, T. R., and Levinson, D. A. (1983). The use of Kane’s dynamical equations in robotics. The International
                         Journal of Robotics Research. 2:3–21.
                       Kane, T. R., and Levison, D. A. (1985). Dynamics: Theory and Applications. McGraw-Hill, New York.
                       Kempson, G. E. (1980). The Joints and Synovial Fluid, vol. 2. Academic Press, Chapter 5, pp. 177–238.
                       Lodish, H., Berk, A., Zipursky, S. L., et al. (2000). Molecular Cell Biology, 4th ed. W. H. Freeman and Company,
                         New York.
                       Mak, A.F. (1986).  The apparent viscoelastic behavior of articular cartilage—the contributions from the
                         intrinsic matrix viscoelasticity and interstitial fluid flows.  Journal of Biomechanical Engineering.
                         108(2): 123-130.
                       McMahon, T. A. (1984).  Muscles, Reflexes, and Locomotion. Princeton Univ. Press, New Jersey.
                       Morrison, J. B. (1970) The mechanics of the knee joint in relation to normal walking. Journal of Biomechanics.
                         3:51–61.
                       Mow, V. C., Holmes, M. H., and Lai, W. M. (1984). Fluid transport and mechanical properties of articular
                         cartilage: A review. Journal of Biomechanics. 17:377–394.
                       Noyes, F. R., and Grood, E. S. (1976). The strength of the anterior cruciate ligament in humans and rhesus
                         monkeys. Journal of Bone and Joint Surgery. 58-A:1074–1082.
                       Pandy, M. G. (1990). An analytical framework for quantifying muscular action during human movement. In: Winters,
                         J. M., Woo, S. L-Y. (ed.):  Multiple Muscle Systems—Biomechanics and Movement Organization. Springer-
                         Verlag, New York, pp. 653–662.
                       Pandy, M. G. (1999). Moment arm of a muscle force. Exercise and Sport Sciences Reviews. 27:79–118.
                       Pandy, M. G. (2001). Computer modeling and simulation of human movement. Annual Review of Biomedical
                         Engineering. 3:245–273.
                       Pandy, M. G., Anderson, F. C., and Hull, D. G. (1992). A parameter optimization approach for the optimal
                         control of large-scale musculoskeletal systems. Journal of Biomechanical Engineering. 114:450–460.
                       Pandy, M. G., and Berme, N. (1988). A numerical method for simulating the dynamics of human walking.
                         Journal of Biomechanics. 21:1043–1051.
                       Pandy, M. G., Garner, B. A., and Anderson, F. C. (1995). Optimal control of non-ballistic muscular movements:
                         A constraint-based performance criterion for rising from a chair. Journal of Biomechanical Engineering.
                         117:15–26.
                       Pandy, M. G., and Sasaki, K. (1998). A three-dimensional musculoskeletal model of the human knee joint. Part II:
                         Analysis of ligament function. Computer Methods in Biomechanics and Biomedical Engineering. 1:265–283.
                       Pandy, M. G., Sasaki, K., and Kim, S. (1997). A three-dimensional musculoskeletal model of the human knee joint.
                         Part I: Theoretical construction. Computer Methods in Biomechanics and Biomedical Engineering. 1:87–108.
                       Pandy, M. G., and Shelburne, K. B. (1997). Dependence of cruciate-ligament loading on muscle forces and external
                         load. Journal of Biomechanics. 30:1015–1024.
                       Pandy, M. G., and Zajac, F. E. (1991). Optimal muscular coordination strategies for jumping. Journal of Biomechanics
                         24:1–10.
                       Pandy, M. G., Zajac, F. E., Sim, E., and Levine, W. S. (1990). An optimal control model for maximum-height
                         human jumping. Journal of Biomechanics. 23:1185–1198.
                       Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J., and Pandy, M. G. (2004). Model prediction of
                         anterior cruciate ligament force during drop-landings.  Medicine and Science in Sports and Exercise.
                         36:1949–1958.
                       Powell, M. J. D. (1978). A fast algorithm for nonlinearly constrained optimization calculations. In: Matson, G. A.
                         (ed.): Numerical Analysis: Lecture Notes in Mathematics. Springer-Verlag, New York , vol. 630, pp. 144–157.
                       Raasch, C. C., Zajac, F. E., Ma, B., and Levine, W. S. (1997). Muscle coordination of maximum-speed pedaling.
                         Journal of Biomechanics. 6:595–602.
                       Schipplein, O. D., and Andriacchi, T. P. (1991). Interaction between active and passive knee stabilizers during
                         level walking. Journal of Orthopaedic Research. 9:113–119.
                       Seireg, A., and Arvikar, R. J. (1973). A mathematical model for evaluation of forces in the lower extremities of
                         the musculoskeletal system. Journal of Biomechanics. 6:313–326.
   210   211   212   213   214   215   216   217   218   219   220