Page 214 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 214

BIOMECHANICS OF THE MUSCULOSKELETAL SYSTEM  191

                          Bigland-Ritchie, R., Johansson, R., Lippold, O., et al. (1983). Changes in motor neuron firing rates during
                            sustained maximal voluntary contractions. Journal of Physiology. 340:335–346.
                          Brand, R. A., Crowninshield, R. D., Wittstock, C. E., et al. (1982). A model of lower extremity muscular
                            anatomy. Journal of Biomechanical Engineering. 104:304–310.
                          Buchanan, T. S., Moniz, M. J., Dewald, J. P., and Rymer, W. Z. (1993). Estimation of muscle forces about
                            the wrist joint during isometric tasks using an EMG coefficient method.  Journal of Biomechanics.
                            26:547–560.
                          Butler, D. L., Grood, E. S., Noyes, F. R., and Zernicke, R. F. (1978). Biomechanics of ligaments and tendons.
                            Exercise and Sport Sciences Reviews. 6:125–181.
                          Crowninshield, R. D., and Brand, R. A. (1981). A physiologically based criterion of muscle force prediction in
                            locomotion. Journal of Biomechanics. 14:793–801.
                          Davy, D. T., and Audu, M. L. (1987). A dynamic optimization technique for predicting muscle forces in the swing
                            phase of gait. Journal of Biomechanics. 20:187–201.
                          Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., and Rosen, J. M. (1990). An interactive graphics-based
                            model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical
                            Engineering. 37:757–767.
                          DeLuca, C. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics.
                            13:135–163.
                          Ebashi, S., and Endo, M. (1968). Calcium ion and muscle contraction. Progress in Biophysics and Molecular
                            Biology. 18:125–183.
                          Enoka, R. M. (1994). Neuromechanical Basis of Kinesiology, 2d ed. Human Kinetics, New York.
                          Evans, H., Pan, Z., Parker, P., and Scott, R. (1994). Signal processing for proportional myoelectric control. IEEE
                            Transactions on Biomedical Engineering. 41:207–211.
                          Fang, J., Shahani, B., and Graupe, D. (1997). Motor unit number estimation by spatial-temporal summation of
                            single motor unit potential. Muscle and Nerve. 20:461–468.
                          Fregly, B. J., and Zajac, F. E. (1996). A state-space analysis of mechanical energy generation, absorption, and
                            transfer during pedaling. Journal of Biomechanics. 29:81–90.
                          Friederich, J. A., Brand, R. A. (1990). Muscle fiber architecture in the human lower limb. Journal of Biomechanics
                            23(1): 91–95.
                          Garner, B. A., and Pandy, M. G. (2000). The Obstacle-set method for representing muscle paths in muscu-
                            loskeletal models. Computer Methods in Biomechanics and Biomedical Engineering. 3:1–30.
                          Garner, B. A., and Pandy, M. G. (2001). Musculoskeletal model of the human arm based on the Visible Human
                            Male dataset. Computer Methods in Biomechanics and Biomedical Engineering. 4:93–126.
                          Glitsch, U., and Baumann, W. (1997). The three-dimensional determination of internal loads in the lower extremity.
                            Journal of Biomechanics. 30:1123–1131.
                          Hardt, D. E. (1978). Determining muscle forces in the leg during human walking: An application and evaluation
                            of optimization methods. Journal of Biomechancal Engineering. 100:72–78.
                          Hatze, H. (1976). The complete optimization of human motion. Mathematical Biosciences. 28:99–135.
                          Hatze, H. (1978). A general myocybernetic control model of skeletal muscle. Biological Cybernetics. 28:143–157.
                          Hayes, W. C., and Bodine, A. J. (1978). Flow-independent viscoelastic properties of articular cartilage matrix.
                            Journal of Biomechanics. 11:407–419.
                          Hayes, W. C., and Mockros, L. F. (1971) Viscoelastic properties of human articular cartilage. Journal of Applied
                            Physiology. 31:562–568.
                          Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society
                            (London), Series B. 126:136–195.
                          Hof, A. L., Pronk, C. A. N., and Best, J. A. van (1987). Comparison between EMG to force processing and
                            kinetic analysis for the calf muscle moment in walking and stepping. Journal of Biomechanics. 20:167–178.
                          Hori, R. Y., and Mockros, L. F. (1976). Indention tests of human articular cartilage. Journal of Applied Physiology.
                            31:562–568.
                          Hurwitz, D. E., Sumner, D. R., Andriacchi, T. P., and Sugar, D. A. (1998). Dynamic knee loads during gait
                            predict proximal tibial bone distribution. Journal of Biomechanics. 31:423–430.
                          Huxley, A. F. (1957). Muscle structure and theories of contraction.  Progress in Biophysics and Biophysical
                            Chemistry. 7:255–318.
   209   210   211   212   213   214   215   216   217   218   219