Page 216 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 216
BIOMECHANICS OF THE MUSCULOSKELETAL SYSTEM 193
Serpas, F., Yanagawa, T., and Pandy, M. G. (2002). Forward-dynamics simulation of anterior cruciate ligament forces
developed during isokinetic dynamometry. Computer Methods in Biomechanics and Biomedical Engineering.
5(1): 33–43.
Shelburne, K. B., and Pandy, M. G. (1997). A musculoskeletal model of the knee for evaluating ligament forces
during isometric contractions. Journal of Biomechanics. 30:163–176.
Shelburne , K. B., and Pandy, M. G. (1998). Determinants of cruciate-ligament loading during rehabilitation exercise.
Clinical Biomechanics. 13:403–413.
Shelburne, K. B., Pandy, M. G., Anderson, F. C., and Torry, M. R. (2004a). Pattern of anterior cruciate ligament
force in normal walking. Journal of Biomechanics. 37:797–805.
Shelburne, K. B., Pandy, M. G., and Torry, M. R. (2004b). Comparison of shear forces and ligament loading in
the healthy and ACL-deficient knee during gait. Journal of Biomechanics. 37:313–319.
Shelburne, K. B., Torry, M. R., and Pandy, M. G. (2006). Contributions of muscles, ligaments, and the ground
reaction force to tibiofemoral joint loading during normal gait. Journal of Orthopaedic Research.
24:1983–1990.
Yamaguchi, G. T., and Zajac, F. E. (1990). Restoring unassisted natural gait to paraplegics via functional neuro-
muscular stimulation: A computer simulation study. IEEE Transactions on Biomedical Engineering.
37:886–902.
Yanagawa, T., Shelburne, K.B., Serpas, F., Pandy, M.G., (2002). Effect of hamstrings muscle action on stability
of the ACL-deficient knee in isokinetic extension exercise. Clinical Biomechanics. 17: 705–712.
Zajac, F. E., and Gordon, M. E. (1989). Determining muscle’s force and action in multi-articular movement.
Exercise and Sport Sciences Reviews. 17:187–230.