Page 263 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 263
240 BIOMECHANICS OF THE HUMAN BODY
Bioengineering Conference, Boulder, Colorado, June 22–24, 1981, Vol. 45, pp. 171–184, American Society
of Mechanical Engineers, New York.
54. Krajcinovic, D., Trafimow, J., and Sumarac, D. (1987), Simple constitutive model for cortical bone,
J. Biomech. 20(8):779–784.
55. Braidotti, P., Branca, F. P., and Stagni, L. (1997), Scanning electron microscopy of human cortical bone
failure surfaces, J. Biomech. 30(2):155–162.
56. Pidaparti, R. M., Chandran, A., Takano, Y., and Turner, C. H. (1996), Bone mineral lies mainly outside
collagen fibrils: Predictions of a composite model for osteonal bone, J. Biomech. 29(7):909–916.
57. Akiva, U., Wagner, H. D., and Weiner, S. (1998), Modelling the three-dimensional elastic constants of
parallel-fibred and lamellar bone, J. Mater. Sci. 33(6):1497–1509.
58. Sasaki, N., Ikawa, T., and Fukuda, A. (1991), Orientation of mineral in bovine bone and the anisotropic
mechanical properties of plexiform bone, J. Biomech. 24(1):57–61.
59. Wagner, H. D., and Weiner, S. (1992), On the relationship between the microstructure of bone and its
mechanical stiffness, J. Biomech. 25(11):1311–1320.
60. McCutchen, C. W. (1975), Do mineral crystals stiffen bone by straitjacketing its collagen? J. Theor. Biol.
51(1):51–58.
61. Rho, J. Y., Tsui, T. Y., and Pharr, G. M. (1997), Elastic properties of human cortical and trabecular lamel-
lar bone measured by nanoindentation, Biomaterials 18(20):1325–1330.
62. Zysset, P. K., Guo, X. E., Hoffler, C. E., Moore, K. E., and Goldstein, S. A. (1999), Elastic modulus and
hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,
J. Biomech. 32(10):1005–1012.
63. Cowin, S. C., Moss-Salentijn, L., and Moss, M. L. (1991), Candidates for the mechanosensory system in
bone, J. Biomech. Eng. 113(2):191–197.
64. Lanyon, L. E. (1993), Osteocytes, strain detection, bone modeling and remodeling, Calcif. Tissue Int.
53(Suppl. 1):S102–106; see also Discussion, pp. S106–107.
65. Marotti, G., Ferretti, M., Muglia, M. A., Palumbo, C., and Palazzini, S. (1992), A quantitative evaluation of
osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae, Bone 13(5):363–368.
66. Mullender, M. G., and Huiskes, R. (1995), Proposal for the regulatory mechanism of Wolff’s law, J. Orthop.
Res. 13(4):503–512.
67. Frost, H. M. (1987), Bone “mass” and the “mechanostat”: A proposal, Anat. Rec. 219(1):1–9.
68. Biewener, A. A., Thomason, J., Goodship, A., and Lanyon, L. E. (1983), Bone stress in the horse forelimb
during locomotion at different gaits: A comparison of two experimental methods, J. Biomech.
16(8):565–576.
69. Lanyon, L. E. (1984), Functional strain as a determinant for bone remodeling, Calcif. Tissue Int. 36(Suppl.
1):S56–61.
70. Turner, C. H., Owan, I., and Takano, Y. (1995), Mechanotransduction in bone: Role of strain rate,
Am. J. Physiol. 269(3 Pt. 1):E438–442.
71. Fyhrie, D. P., and Carter, D. R. (1986), A unifying principle relating stress to trabecular bone morphology,
J. Orthop. Res. 4(3):304–317.
72. Weinans, H., Huiskes, R., and Grootenboer, H. J. (1992) The behavior of adaptive bone-remodeling simu-
lation models, J. Biomech. 25(12):1425–1441.
73. Martin, R. B., and Burr, D. B. (1989), Structure, Function, and Adaptation of Compact Bone, Raven Press,
New York.
74. Carter, D. R., Orr, T. E., and Fyhrie, D. P. (1989), Relationships between loading history and femoral
cancellous bone architecture, J. Biomech. 22(3):231–244.
75. Mullender, M. G., Huiskes, R., and Weinans, H. (1994), A physiological approach to the simulation of bone
remodeling as a self-organizational control process, J. Biomech. 27(11):1389–1394.
76. Huiskes, R., Weinans, H., and van Rietbergen, R. (1992), The relationship between stress shielding
and bone resorption around total hip stems and the effects of flexible materials, Clin. Orthop.
274:124–134.
77. Morgan, E. F., Yeh, O. C., Chang, W. C., and Keaveny, T. M. (2001), Non-linear behavior of trabecular bone
at small strains, J. Biomech. Eng. 123(1):1–9.