Page 264 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 264

BONE MECHANICS  241

                          78. Mosekilde, L., Mosekilde, L., and Danielsen, C. C. (1987), Biomechanical competence of vertebral
                             trabecular bone in relation to ash density and age in normal individuals, Bone 8(2):79–85.
                          79. Hipp, J. A., Rosenberg, A. E., and Hayes, W. C. (1992), Mechanical properties of trabecular bone within
                             and adjacent to osseous metastases, J. Bone Miner. Res. 7(10):1165–1171.
                          80. Pugh, J. W., Radin, E. L., and Rose, R. M. (1974), Quantitative studies of human subchondral cancellous
                             bone: Its relationship to the state of its overlying cartilage, J. Bone Joint Surg. 56A(2):313–321.
                          81. Goldstein, S. A., Wilson, D. L., Sonstegard, D. A., and Matthews, L. S. (1983), The mechanical properties
                             of human tibial trabecular bone as a function of metaphyseal location, J. Biomech. 16(12):965–969.
                          82. Ciarelli, M. J., Goldstein, S. A., Kuhn, J. L., Cody, D. D., and Brown, M. B. (1991), Evaluation of orthog-
                             onal mechanical properties and density of human trabecular bone from the major metaphyseal regions with
                             materials testing and computed tomography, J. Orthop. Res. 9(5):674–682.
                          83. Goulet, R. W., Goldstein, S. A., Ciarelli, M. J., Kuhn, J. L., Brown, M. B., and Feldkamp, L. A. (1994), The
                             relationship between the structural and orthogonal compressive properties of trabecular bone, J. Biomech.
                             27(4):375–389.
                          84. Linde, F., Pongsoipetch, B., Frich, L. H., and Hvid, I. (1990), Three-axial strain controlled testing applied
                             to bone specimens from the proximal tibial epiphysis, J. Biomech. 23(11):1167–1172.
                          85. Townsend, P. R., Raux, P., Rose, R. M., Miegel, R. E., and Radin, E. L. (1975), The distribution and
                             anisotropy of the stiffness of cancellous bone in the human patella, J. Biomech. 8(6):363–367.
                          86. Ford, C. M., and Keaveny, T. M. (1996), The dependence of shear failure properties of bovine tibial
                             trabecular bone on apparent density and trabecular orientation, J. Biomech. 29:1309–1317.
                          87. Keaveny, T. M., Wachtel, E. F., Ford, C. M., and Hayes, W. C. (1994), Differences between the tensile and
                             compressive strengths of bovine tibial trabecular bone depend on modulus, J. Biomech. 27:1137–1146.
                          88. Hansson, T. H., Keller, T. S., and Panjabi, M. M. (1987), A study of the compressive properties of lumbar
                             vertebral trabeculae: Effects of tissue characteristics, Spine 12(1):56–62.
                          89. Hvid, I., Bentzen, S. M., Linde, F., Mosekilde, L., and Pongsoipetch, B. (1989), X-ray quantitative
                             computed tomography: The relations to physical properties of proximal tibial trabecular bone specimens,
                             J. Biomech. 22(8–9):837–844.
                          90. Hvid, I., Jensen, N. C., Bunger, C., Solund, K., and Djurhuus, J. C. (1985), Bone mineral assay: Its relation
                             to the mechanical strength of cancellous bone, Eng. Med. 14:79–83.
                          91. Rohl, L., Larsen, E., Linde, F., Odgaard, A., and Jorgensen, J. (1991), Tensile and compressive properties
                             of cancellous bone, J. Biomech. 24(12):1143–1149.
                          92. Chang, W. C. W., Christensen, T. M., Pinilla, T. P., and Keaveny, T. M. (1999), Isotropy of uniaxial yield
                             strains for bovine trabecular bone, J. Orthop. Res. 17:582–585.
                          93. Turner, C. H. (1989), Yield behavior of bovine cancellous bone, J. Biomech. Eng. 111(3):256–260.
                          94. Van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A. (1995), A new method to determine
                             trabecular bone elastic properties and loading using micromechanical finite element models, J. Biomech.
                             28(1):69–81.
                          95. Kinney, J. H., Lane, N. E., and Haupt, D. L. (1995), In vivo three-dimensional microscopy of trabecular
                             bone, J. Bone Miner. Res. 10(2):264–270.
                          96. Kuhn, J. L., Goldstein, S. A., Feldkamp, L. A., Goulet, R. W., and Jesion, G. (1990), Evaluation of a micro-
                             computed tomography system to study trabecular bone structure, J. Orthop. Res. 8(6):833–842.
                          97. Beck, J. D., Canfield, B. L., Haddock, S. M., Chen, T. J. H., Kothari, M., and Keaveny, T. M. (1997), Three-
                             dimensional imaging of trabecular bone using the computer numerically controlled milling technique, Bone
                             21:281–287.
                          98. Yang, G., Kabel, J., Van Rietbergen, B., Odgaard, A., Huiskes, R., and Cowin, S. (1999), The anisotropic
                             Hooke’s law for cancellous bone and wood, J. Elasticity 53:125–146.
                          99. Zysset, P. K., Goulet, R. W., and Hollister, S. J. (1998), A global relationship between trabecular bone
                             morphology and homogenized elastic properties, J. Biomech. Eng. 120(5):640–646.
                          100. Odgaard, A., Kabel, J., an Rietbergen, B., Dalstra, M., and Huiskes, R. (1997), Fabric and elastic principal
                             directions of cancellous bone are closely related, J. Biomech. 30(5):487–495.
                          101. Fenech, C. M., and Keaveny, T. M. (1999), A cellular solid criterion for predicting the axial-shear failure
                             properties of trabecular bone, J. Biomech. Eng. 121:414–422.
   259   260   261   262   263   264   265   266   267   268   269