Page 266 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 266

BONE MECHANICS  243

                          128. Cheal, E. J., Spector, M., and Hayes, W. C. (1992), Role of loads and prosthesis material properties on the
                             mechanics of the proximal femur after total hip arthroplasty, J. Orthop. Res. 10(3):405–422.
                          129. Keaveny, T. M., and Bartel, D. L. (1995), Mechanical consequences of bone ingrowth in a hip prosthesis
                             inserted without cement, J. Bone Joint Surg. 77A:911–923.
                          130. Kopperdahl, D. L., and Keaveny,  T. M. (2002), Quantitative computed tomography estimates of the
                             mechanical properties of human vertebral trabecular bone, J. Orthop. Res. (in press).
                          131. Lotz, J. C., Gerhart, T. N., and Hayes, W. C. (1990), Mechanical properties of trabecular bone from the
                             proximal femur: A quantitative CT study, J. Comput. Assist. Tomogr. 14(1):107–114.
                          132. Choi, K., Kuhn, J. L., Ciarelli, M. J., and Goldstein, S. A. (1990), The elastic moduli of human subchon-
                             dral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, J. Biomech.
                             23(11):1103–1113.
                          133. Kuhn, J. L., Goldstein, S.  A., Choi, K., London, M., Feldkamp, L.  A., and Matthews, L. S. (1989),
                             Comparison of the trabecular and cortical tissue moduli from human iliac crests,  J. Orthop. Res.
                             7(6):876–884.
                          134. Mente, P. L., and Lewis, J. L. (1989), Experimental method for the measurement of the elastic modulus of
                             trabecular bone tissue, J. Orthop. Res. 7(3):456–461.
                          135. Ryan, S. D., and Williams, J. L. (1989), Tensile testing of rodlike trabeculae excised from bovine femoral
                             bone, J. Biomech. 22(4):351–355.
                          136. Ashman, R. B., and Rho, J. Y. (1988), Elastic modulus of trabecular bone material, J. Biomech. 21(3):177–181.
                          137. Rho, J. Y., Ashman, R. B., and Turner, C. H. (1993), Young’s modulus of trabecular and cortical bone
                             material: Ultrasonic and microtensile measurements, J. Biomech. 26:111–119.
                          138. Turner, C. H., Rho, J., Takano, Y., Tsui, T. Y., and Pharr, G. M. (1999), The elastic properties of trabecular
                             and cortical bone tissues are similar: Results from two microscopic measurement techniques, J. Biomech.
                             32(4):437–441.
                          139. Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., and Keaveny, T. M. (2000), High-resolution finite
                             element models with tissue strength asymmetry accurately predict failure of trabecular bone, J. Biomech.
                             33:1575–1583.
                          140. Guo, X. E., and Goldstein, S. A. (1997), Is trabecular bone tissue different from cortical bone tissue? Forma
                             12:185–196.
                          141. Choi, K., and Goldstein, S. A. (1992), A comparison of the fatigue behavior of human trabecular and
                             cortical bone tissue, J. Biomech. 25(12):1371–1381.
                          142. Cowin, S. (2001), Bone Mechanics Handbook, 2d ed., CRC Press, Boca Raton, Fla.
                          143. Currey, J. (1984), The Mechanical Adaptations of Bones, Princeton University Press, Princeton, N.J.
                          144. Martin, R., Burr, D., and Sharkey, N. (1998), Skeletal Tissue Mechanics, Springer-Verlag, New York.
                          145. Wainwright, S., Gosline, J., and Biggs, W. (1976), Mechanical Design in Organisms, Halsted Press, New York.
                          146. Tortora, G. (1983), Principles of Human Anatomy 3d ed., Harper & Row, New York.
                          147. Ross, M., and Romrell, L. (1989), Histology, 2d ed., Williams & Wilkins, Baltimore.
                          148. Fondrk, M. T. (1989), An experimental and analytical investigation into the nonlinear constitutive equations
                             of cortical bone, Ph.D. thesis, Case Western Reserve University, Cleveland.
                          149. Mosekilde, L., and Mosekilde, L. (1986), Normal vertebral body size and compressive strength: Relations
                             to age and to vertebral and iliac trabecular bone compressive strength, Bone 7:207–212.
                          150. Reilly, D. T., and Burstein, A. H. (1975), The elastic and ultimate properties of compact bone tissue,
                             J. Biomech. 8:393–405.
                          151. Linde, F., and Hvid, I. (1989), The effect of constraint on the mechanical behaviour of trabecular bone
                             specimens, J. Biomech. 22(5):485–490.
                          152. Zysset, P. K., Guo, X. E., Hoffler, C. E., Moore, K. E., and Goldstein, S. A. (1998), Mechanical properties
                             of human trabecular bone lamellae quantified by nanoindentation, Technol. Health Care 6(5–6):429–432.
                          153. Hou, F. J., Lang, S. M., Hoshaw, S. J., Reimann, D. A., and Fyhrie, D. P. (1998), Human vertebral body
                             apparent and hard tissue stiffness, J. Biomech. 31(11):1009–1015.
                          154. Ladd, A. J., Kinney, J. H., Haupt, D. L., and Goldstein, S. A. (1998), Finite-element modeling of trabecular
                             bone: Comparison with mechanical testing and determination of tissue modulus, J. Orthop. Res. 16(5):
                             622–628.
   261   262   263   264   265   266   267   268   269   270   271