Page 262 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 262

BONE MECHANICS  239

                          27. McElhaney, J. H., and Byars, E. F. (1965), Dynamic response of biological materials, in Proc. Amer. Soc.
                             Mech. Eng., ASME 65-WA/HUF-9:8, Chicago.
                          28. Lakes, R. S. (1982), Dynamical study of couple stress effects in human compact bone, J. Biomech. Eng.
                             104(1):6–11.
                          29. Lakes, R. S., Katz, J. L., and Sternstein, S. S. (1979), Viscoelastic properties of wet cortical bone: I.
                             Torsional and biaxial studies, J. Biomech. 12(9):657–678.
                          30. Fischer, R. A., Arms, S. W., Pope, M. H., and Seligson, D. (1986), Analysis of the effect of using two dif-
                             ferent strain rates on the acoustic emission in bone, J. Biomech. 19(2):119–127.
                          31. Cezayirlioglu, H., Bahniuk, E., Davy, D. T., and Heiple, K. G. (1985), Anisotropic yield behavior of bone
                             under combined axial force and torque, J. Biomech. 18(1):61–69.
                          32. Cowin, S. C. (1989), Bone Mechanics, CRC Press, Boca Raton, Fla.
                          33. Courtney, A. C., Hayes, W. C., and Gibson, L. J. (1996), Age-related differences in post-yield damage in
                             human cortical bone: Experiment and model, J. Biomech. 29(11):1463–1471.
                          34. Fondrk, M. T., Bahniuk, E. H., and Davy, D. T. (1999), A damage model for nonlinear tensile behavior of
                             cortical bone, J. Biomech. Eng. 121:533–541.
                          35. Wright, T. M., Vosburgh, F., and Burstein, A. H. (1981), Permanent deformation of compact bone moni-
                             tored by acoustic emission, J. Biomech. 14(6):405–409.
                          36. Zioupos, P., Currey, J. D., and Sedman, A. J. (1994), An examination of the micromechanics of failure of
                             bone and antler by acoustic emission tests and laser scanning confocal microscopy,  Med. Eng. Phys.
                             16(3):203–212.
                          37. Carter, D. R., Caler, W. E., Spengler, D. M., and Frankel, V. H. (1981), Fatigue behavior of adult cortical
                             bone: The influence of mean strain and strain range, Acta Orthop. Scand. 52(5):481–490.
                          38. Pattin, C. A., Caler, W. E., and Carter, D. R. (1996), Cyclic mechanical property degradation during fatigue
                             loading of cortical bone, J. Biomech. 29(1):69–79.
                          39. Schaffler, M. B., Radin, E. L., and Burr, D. B. (1990), Long-term fatigue behavior of compact bone at low
                             strain magnitude and rate, Bone 11(5):321–326.
                          40. Carter, D. R., Caler, W. E., Spengler, D. M., and Frankel, V. H. (1981), Uniaxial fatigue of human cortical
                             bone: The influence of tissue physical characteristics, J. Biomech. 14(7):461–470.
                          41. Caler,  W. E., and Carter, D. R. (1989), Bone creep-fatigue damage accumulation,  J. Biomech.
                             22(6–7):625–635.
                          42. Frost, H. M. (1960), Presence of microscopic cracks in vivo in bone, Bull. Henry Ford Hosp. 8:27–35.
                          43. Schaffler, M. B., Choi, K., and Milgrom, C. (1995), Aging and matrix microdamage accumulation in human
                             compact bone, Bone 17(6):521–525.
                          44. Norman, T. L., and Wang, Z. (1997), Microdamage of human cortical bone: Incidence and morphology in
                             long bones, Bone 20(4):375–379.
                          45. Brown, C. U., Yeni, Y. N., and Norman, T. L. (2000), Fracture toughness is dependent on bone location:
                             A study of the femoral neck, femoral shaft, and the tibial shaft, J. Biomed. Mater. Res. 49(3):380–389.
                          46. Melvin, J. W. (1993), Fracture mechanics of bone, J. Biomech. Eng. 115(4B):549–554.
                          47. Yeni, Y. N., Brown, C. U., and Norman, T. L. (1998), Influence of bone composition and apparent density
                             on fracture toughness of the human femur and tibia, Bone 22(1):79–84.
                          48. Yeni, Y. N., Brown, C. U., Wang, Z., and Norman, T. L. (1997), The influence of bone morphology on
                             fracture toughness of the human femur and tibia, Bone 21(5):453–459.
                          49. Landis, W. J. (1995), The strength of a calcified tissue depends in part on the molecular structure and
                             organization of its constituent mineral crystals in their organic matrix, Bone 16(5):533–544.
                          50. Katz, J. L. (1971), Hard tissue as a composite material: I. Bounds on the elastic behavior, J. Biomech.
                             4(5):455–473.
                          51. Mammone, J. F., and Hudson, S. M. (1993), Micromechanics of bone strength and fracture, J. Biomech.
                             26(4–5):439–446.
                          52. Gottesman,  T., and Hashin, Z. (1980),  Analysis of viscoelastic behaviour of bones on the basis of
                             microstructure, J. Biomech. 13(2):89–96.
                          53. Katz, J. L. (1981), Composite material models for cortical bone, in S. C. Cowin (ed.),  Mechanical
                             Properties of Bone: Proceedings of the Joint ASME-ASCE Applied Mechanics, Fluids Engineering, and
   257   258   259   260   261   262   263   264   265   266   267