Page 265 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 265

242  BIOMECHANICS OF THE HUMAN BODY

                       102. Keaveny, T. M., Wachtel, E. F., Zadesky, S. P., and Arramon, Y. P. (1999), Application of the Tsai-Wu
                          quadratic multiaxial failure criterion to bovine trabecular bone, J. Biomech. Eng. 121:99–107.
                       103. Stone, J. L., Beaupre, G. S., and Hayes, W. C. (1983), Multiaxial strength characteristics of trabecular bone,
                          J. Biomech. 16(9):743–752.
                       104. Niebur, G. L., and Keaveny, T. M. (2001), Trabecular bone exhibits multiple failure surfaces in biaxial loading,
                          Trans. Orthop. Res. Soc. 26:517.
                       105. Keaveny, T. M., Wachtel, E. F., and Kopperdahl, D. L. (1999), Mechanical behavior of human trabecular
                          bone after overloading, J. Orthop. Res. 17:346–353.
                       106. Keaveny, T. M., Wachtel, E. F., Guo, X. E., and Hayes, W. C. (1994), Mechanical behavior of damaged
                          trabecular bone, J. Biomech. 27(11):1309–1318.
                       107. Zysset, P. K., and Curnier, A. (1996), A 3D damage model for trabecular bone based on fabric tensors,
                          J. Biomech. 29(12):1549–1558.
                       108. Fondrk, M., Bahniuk, E., Davy, D. T., and Michaels, C. (1988), Some viscoplastic characteristics of bovine
                          and human cortical bone, J. Biomech. 21(8):623–630.
                       109. Carter, D. R., and Hayes, W. C. (1977), The compressive behavior of bone as a two-phase porous structure,
                          J. Bone Joint Surg. 59A:954–962.
                       110. Linde, F., Norgaard, P., Hvid, I., Odgaard, A., and Soballe, K. (1991), Mechanical properties of trabecular
                          bone: Dependency on strain rate, J. Biomech. 24(9):803–809.
                       111. Ochoa, J. A., Sanders, A. P., Kiesler, T. W., Heck, D. A., Toombs, J. P., Brandt, K. D., and Hillberry, B. M.
                          (1997), In vivo observations of hydraulic stiffening in the canine femoral head,  J. Biomech. Eng.
                          119(1):103–108.
                       112. Zilch, H., Rohlmann, A., Bergmann, G., and Kolbel, R. (1980), Material properties of femoral cancellous
                          bone in axial loading: II. Time dependent properties, Arch. Orthop. Trauma Surg. 97(4):257–262.
                       113. Deligianni, D. D., Maris, A., and Missirlis, Y. F. (1994), Stress relaxation behaviour of trabecular bone
                          specimens, J. Biomech. 27(12):1469–1476.
                       114. Linde, F., Hvid, I., and Madsen, F. (1992), The effect of specimen geometry on the mechanical behaviour
                          of trabecular bone specimens, J. Biomech. 25:359–368.
                       115. Odgaard, A., and Linde, F. (1991), The underestimation of Young’s modulus in compressive testing of
                          cancellous bone specimens, J. Biomech. 24(8):691–698.
                       116. Zhu, M., Keller, T. S., and Spengler, D. M. (1994), Effects of specimen load-bearing and free surface
                          layers on the compressive mechanical properties of cellular materials, J. Biomech. 27(1):57–66.
                       117. Keaveny, T. M., Borchers, R. E., Gibson, L. J., and Hayes, W. C. (1993), Theoretical analysis of the
                          experimental artifact in trabecular bone compressive modulus, J. Biomech. 26(4–5):599–607.
                       118. Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., and Lou, A (1997), Systematic and
                          random errors in compression testing of trabecular bone, J. Orthop. Res. 15:101–110.
                       119. Keaveny, T. M., Borchers, R. E., Gibson, L. J., and Hayes, W. C. (1993), Trabecular bone modulus and
                          strength can depend on specimen geometry, J. Biomech. 26:991–1000.
                       120. Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., and Hayes, W. C. (1994), Trabecular bone
                          exhibits fully linear elastic behavior and yields at low strains, J. Biomech. 27(9):1127–1136.
                       121. Turner, C. H., and Cowin, S. C. (1988), Errors introduced by off-axis measurements of the elastic properties
                          of bone, J. Biomech. 110:213–214.
                       122. Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A., and Fyhrie, D. P. (1999), Femoral
                          strength is better predicted by finite element models than QCT and DXA, J. Biomech. 32(10):1013–1020.
                       123. Keyak, J. H., Meagher, J. M., Skinner, H. B., and Mote, C. D., Jr. (1990), Automated three-dimensional
                          finite element modelling of bone: a new method, J. Biomed. Eng. 12(5):389–397.
                       124. Keyak, J. H., Rossi, S. A., Jones, K. A., and Skinner, H. B. (1998), Prediction of femoral fracture load using
                          automated finite element modeling, J. Biomech. 31:125–133.
                       125. Keyak, J. H., and Skinner, H. B. (1992), Three-dimensional finite element modelling of bone: effects of ele-
                          ment size, J. Biomed. Eng. 14(6):483–489.
                       126. Lotz, J. C., Cheal, E. J., and Hayes, W. C. (1991), Fracture prediction for the proximal femur using finite
                          element models: I. Linear analysis, J. Biomech. Eng. 113(4):353–360.
                       127. Lotz, J. C., Cheal, E. J., and Hayes, W. C. (1991), Fracture prediction for the proximal femur using finite
                          element models: II. Nonlinear analysis, J. Biomech. Eng. 113(4):361–365.
   260   261   262   263   264   265   266   267   268   269   270