Page 265 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 265
242 BIOMECHANICS OF THE HUMAN BODY
102. Keaveny, T. M., Wachtel, E. F., Zadesky, S. P., and Arramon, Y. P. (1999), Application of the Tsai-Wu
quadratic multiaxial failure criterion to bovine trabecular bone, J. Biomech. Eng. 121:99–107.
103. Stone, J. L., Beaupre, G. S., and Hayes, W. C. (1983), Multiaxial strength characteristics of trabecular bone,
J. Biomech. 16(9):743–752.
104. Niebur, G. L., and Keaveny, T. M. (2001), Trabecular bone exhibits multiple failure surfaces in biaxial loading,
Trans. Orthop. Res. Soc. 26:517.
105. Keaveny, T. M., Wachtel, E. F., and Kopperdahl, D. L. (1999), Mechanical behavior of human trabecular
bone after overloading, J. Orthop. Res. 17:346–353.
106. Keaveny, T. M., Wachtel, E. F., Guo, X. E., and Hayes, W. C. (1994), Mechanical behavior of damaged
trabecular bone, J. Biomech. 27(11):1309–1318.
107. Zysset, P. K., and Curnier, A. (1996), A 3D damage model for trabecular bone based on fabric tensors,
J. Biomech. 29(12):1549–1558.
108. Fondrk, M., Bahniuk, E., Davy, D. T., and Michaels, C. (1988), Some viscoplastic characteristics of bovine
and human cortical bone, J. Biomech. 21(8):623–630.
109. Carter, D. R., and Hayes, W. C. (1977), The compressive behavior of bone as a two-phase porous structure,
J. Bone Joint Surg. 59A:954–962.
110. Linde, F., Norgaard, P., Hvid, I., Odgaard, A., and Soballe, K. (1991), Mechanical properties of trabecular
bone: Dependency on strain rate, J. Biomech. 24(9):803–809.
111. Ochoa, J. A., Sanders, A. P., Kiesler, T. W., Heck, D. A., Toombs, J. P., Brandt, K. D., and Hillberry, B. M.
(1997), In vivo observations of hydraulic stiffening in the canine femoral head, J. Biomech. Eng.
119(1):103–108.
112. Zilch, H., Rohlmann, A., Bergmann, G., and Kolbel, R. (1980), Material properties of femoral cancellous
bone in axial loading: II. Time dependent properties, Arch. Orthop. Trauma Surg. 97(4):257–262.
113. Deligianni, D. D., Maris, A., and Missirlis, Y. F. (1994), Stress relaxation behaviour of trabecular bone
specimens, J. Biomech. 27(12):1469–1476.
114. Linde, F., Hvid, I., and Madsen, F. (1992), The effect of specimen geometry on the mechanical behaviour
of trabecular bone specimens, J. Biomech. 25:359–368.
115. Odgaard, A., and Linde, F. (1991), The underestimation of Young’s modulus in compressive testing of
cancellous bone specimens, J. Biomech. 24(8):691–698.
116. Zhu, M., Keller, T. S., and Spengler, D. M. (1994), Effects of specimen load-bearing and free surface
layers on the compressive mechanical properties of cellular materials, J. Biomech. 27(1):57–66.
117. Keaveny, T. M., Borchers, R. E., Gibson, L. J., and Hayes, W. C. (1993), Theoretical analysis of the
experimental artifact in trabecular bone compressive modulus, J. Biomech. 26(4–5):599–607.
118. Keaveny, T. M., Pinilla, T. P., Crawford, R. P., Kopperdahl, D. L., and Lou, A (1997), Systematic and
random errors in compression testing of trabecular bone, J. Orthop. Res. 15:101–110.
119. Keaveny, T. M., Borchers, R. E., Gibson, L. J., and Hayes, W. C. (1993), Trabecular bone modulus and
strength can depend on specimen geometry, J. Biomech. 26:991–1000.
120. Keaveny, T. M., Guo, X. E., Wachtel, E. F., McMahon, T. A., and Hayes, W. C. (1994), Trabecular bone
exhibits fully linear elastic behavior and yields at low strains, J. Biomech. 27(9):1127–1136.
121. Turner, C. H., and Cowin, S. C. (1988), Errors introduced by off-axis measurements of the elastic properties
of bone, J. Biomech. 110:213–214.
122. Cody, D. D., Gross, G. J., Hou, F. J., Spencer, H. J., Goldstein, S. A., and Fyhrie, D. P. (1999), Femoral
strength is better predicted by finite element models than QCT and DXA, J. Biomech. 32(10):1013–1020.
123. Keyak, J. H., Meagher, J. M., Skinner, H. B., and Mote, C. D., Jr. (1990), Automated three-dimensional
finite element modelling of bone: a new method, J. Biomed. Eng. 12(5):389–397.
124. Keyak, J. H., Rossi, S. A., Jones, K. A., and Skinner, H. B. (1998), Prediction of femoral fracture load using
automated finite element modeling, J. Biomech. 31:125–133.
125. Keyak, J. H., and Skinner, H. B. (1992), Three-dimensional finite element modelling of bone: effects of ele-
ment size, J. Biomed. Eng. 14(6):483–489.
126. Lotz, J. C., Cheal, E. J., and Hayes, W. C. (1991), Fracture prediction for the proximal femur using finite
element models: I. Linear analysis, J. Biomech. Eng. 113(4):353–360.
127. Lotz, J. C., Cheal, E. J., and Hayes, W. C. (1991), Fracture prediction for the proximal femur using finite
element models: II. Nonlinear analysis, J. Biomech. Eng. 113(4):361–365.