Page 261 - Biomedical Engineering and Design Handbook Volume 1, Fundamentals
P. 261

238  BIOMECHANICS OF THE HUMAN BODY

                        2. Burr, D. B., Martin, R. B., Schaffler, M. B., and Radin, E. L. (1985), Bone remodeling in response to in
                          vivo fatigue microdamage, J. Biomech. 18(3):189–200.
                        3. Gong, J. K., Arnold, J. S., and Cohn, S. H. (1964), Composition of trabecular and cortical bone, Anat. Rec.
                          149:325–332.
                        4. Lowenstam, H. A., and Weiner, S. (1989), On Biomineralization, Oxford University Press, New York.
                        5. Herring, G. (1972), The organic matrix of bone, in G. Bourne (ed.), The Biochemistry and Physiology of
                          Bone, 2d ed., Vol. 1, pp. 127–189, Academic Press, New York.
                        6. Hodge, A. J., and Petruska, J. A. (1963), Recent studies with the electron microscope on ordered aggregates
                          of the tropocollagen molecule, in G. N. Ramachandran (ed.) Aspects of protein structure, Academic Press,
                          London, pp. 289–300.
                        7. Burr, D. B., Schaffler, M. B., and Frederickson, R. G. (1988), Composition of the cement line and its
                          possible mechanical role as a local interface in human compact bone, J. Biomech. 21(11):939–945.
                        8. Lakes, R., and Saha, S. (1979), Cement line motion in bone, Science 204(4392):501–503.
                        9. Gibson, L. J., and Ashby, M. F. (1997), Cellular Solids: Structures & Properties, 2d ed., Pergamon Press,
                          Oxford, U.K.
                       10. McCalden, R. W., McGeough, J. A., Barker, M. B., and Court-Brown, C. M. (1993), Age-related changes
                          in the tensile properties of cortical bone: The relative importance of changes in porosity, mineralization, and
                          microstructure, J. Bone Joint Surg. 75A(8):1193–1205.
                       11. Morgan, E. F., and Keaveny,  T. M., (2001), Dependence of yield strain of human trabecular bone on
                          anatomic site, J. Biomech. 34(5):569–577.
                       12. Snyder, B. D., Piazza, S., Edwards, W. T., and Hayes, W. C. (1993), Role of trabecular morphology in the
                          etiology of age-related vertebral fractures, Calcif. Tissue Int. 53S(1):S14–S22.
                       13. Kopperdahl, D. L., and Keaveny,  T. M. (1998), Yield strain behavior of trabecular bone,  J. Biomech.
                          31(7):601–608.
                       14. Linde, F., Hvid, I., and Pongsoipetch, B. (1989), Energy absorptive properties of human trabecular bone
                          specimens during axial compression, J. Orthop. Res. 7(3):432–439.
                       15. McCalden, R. W., McGeough, J. A., and Court-Brown, C. M. (1997), Age-related changes in the compres-
                          sive strength of cancellous bone: The relative importance of changes in density and trabecular architecture,
                          J. Bone Joint Surg. 79A(3):421–427.
                       16. Hildebrand, T., Laib, A., Müller, R., Dequeker, J., and Rüegsegger, P. (1999), Direct three-dimensional
                          morphometric analysis of human cancellous bone: Microstructural data from spine, femur, iliac crest, and
                          calcaneus, J. Bone Miner. Res. 14(7):1167–1174.
                       17. Odgaard, A. (1997), Three-dimensional methods for quantification of cancellous bone architecture, Bone
                          20(4):315–328.
                       18. Mosekilde, L. (1989), Sex differences in age-related loss of vertebral trabecular bone mass and structure:
                          Biomechanical consequences, Bone 10(6):425–432.
                       19. Whitehouse,  W. J. (1974),  The quantitative morphology of anisotropic trabecular bone,  J. Microsc.,
                          2:153–168.
                       20. Goldstein, S. A., Goulet, R., and McCubbrey, D. (1993), Measurement and significance of three-dimen-
                          sional architecture to the mechanical integrity of trabecular bone, Calcif. Tissue Int. 53S(1):S127–S133.
                       21. Majumdar, S., Kothari, M., Augat, P., Newitt, D. C., Link, T. M., Lin, J. C., Lang, T., Lu, Y., and Genant,
                          H. K. (1998), High-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture
                          and biomechanical properties, Bone 22(5):445–454.
                       22. Ulrich, D., Van Rietbergen, B., Laib, A., and Rueegsegger, P. (1999), The ability of three-dimensional struc-
                          tural indices to reflect mechanical aspects of trabecular bone, Bone 25(1):55–60.
                       23. Schaffler, M. B., and Burr, D. B., (1988), Stiffness of compact bone: Effects of porosity and density,
                          J. Biomech. 21(1):13–16.
                       24. Currey, J. D. (1988), The effect of porosity and mineral content on the Young’s modulus of elasticity of
                          compact bone, J. Biomech. 21(2):131–139.
                       25. Burstein, A. H., Reilly, D. T., and Martens, M. (1976), Aging of bone tissue: Mechanical properties, J. Bone
                          Joint Surg. 58A(1):82–86.
                       26. Zioupos, P., and Currey, J. D. (1998), Changes in the stiffness, strength, and toughness of human cortical
                          bone with age, Bone 22(1):57–66.
   256   257   258   259   260   261   262   263   264   265   266