Page 369 - Biomedical Engineering and Design Handbook Volume 2, Applications
P. 369

NUCLEAR MEDICINE IMAGING INSTRUMENTATION  347

                          5. M. Lecchi, L. Ottobrini, C. Martelli, A. Del Sole, and G. Lucignani, Instrumentation and probes for molecular
                            and cellular imaging, Q J Nucl Med Mol Imaging, 51(2):111–26, 2007.
                          6. H. Zaidi, Recent developments and future trends in nuclear medicine instrumentation, Z Med Phys, 16(1):
                            5–17, 2006.
                          7. C. S. Levin, in Emission Tomography: The Fundamentals of SPECT and PET, edited by M. N. Wernick and
                            J. N. Aarsvold (Elsevier, San Diego, 2004), pp. 293–334.
                          8. C. B. Hruska, M. K. O’Connor, and D. A. Collins, Comparison of small field of view gamma camera systems
                            for scintimammography, Nucl Med Commun, 26(5):441–5, 2005.
                          9. C. N. Brzymialkiewicz, M. P. Tornai, R. L. McKinley, and J. E. Bowsher, Evaluation of fully 3-D emission
                            mammotomography with a compact cadmium zinc telluride detector,  IEEE  Trans Med Imaging, 24(7):
                            868–77, 2005.
                          10. R. J. Jaszczak, The early years of single photon emission computed tomography (SPECT): an anthology of
                            selected reminiscences, Phys Med Biol, 51(13):R99–115, 2006.
                          11. H. Zaidi and B. Hasegawa, Determination of the attenuation map in emission tomography, J Nucl Med,
                            44(2):291–315, 2003.
                          12. D. A. Lalush and M. N. Wernick, in Emission Tomography: The Fundamentals of SPECT and PET, edited
                            by M. N. Wernick and J. N. Aarsvold (Elsevier, San Diego, 2004), pp. 44–472.
                          13. H. Zaidi and K. F. Koral, Scatter modelling and compensation in emission tomography, Eur J Nucl Med Mol
                            Imaging, 31(5):761–82, 2004.
                          14. M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, M. V. Narayanan, and T. Farncombe, in
                            Emission Tomography: The Fundamentals of SPECT and PET, edited by M. N. Wernick and J. N. Aarsvold
                            (Elsevier, San Diego, 2004), pp. 473–98.
                          15. J. Qi and R. M. Leahy, Iterative reconstruction techniques in emission computed tomography, Phys Med Biol,
                            51(15):R541–78, 2006.
                          16. M. Defrise and G. T. Gullberg, Image reconstruction, Phys Med Biol, 51(13):R139–54, 2006.
                          17. J. A. Patton, P. J. Slomka, G. Germano, and D. S. Berman, Recent technologic advances in nuclear cardiology,
                            J Nucl Cardiol, 14(4):501–13, 2007.
                          18. J. A. Patton, M. P. Sandler, and D. Berman, D-SPECT: A new solid state camera for high speed molecular
                            imaging, J Nucl Med, 47(Supplement 1): 189P, 2006.
                          19. M. K. O’Connor and B. J. Kemp, Single-photon emission computed tomography/computed tomography:
                            Basic instrumentation and innovations, Semin Nucl Med, 36(4):258–66, 2006.
                          20. B. H. Hasegawa, K. Iwata, K. H. Wong, M. C. Wu, A. J. Da Silva, H. R. Tang, W. C. Barber, A. H. Hwang,
                            and A. E. Sakdinawat, Dual-modality imaging of function and physiology, Acad Radiol, 9(11):1305–21,
                            2002.
                          21. M. Singh, An electronically collimated gamma camera for single photon emission computed tomography.
                            Part I: Theoretical considerations and design criteria, Med Phys, 10(4):421–7, 1983.
                          22. A. S. Hoover, J. P. Sullivan, B. Baird, S. P. Brumby, R. M. Kippen, C. W. McCluskey, M. W. Rawool-
                            Sullivan, and E. B. Sorensen, Gamma-ray imaging with a Si/CsI(Tl) Compton detector, Appl Radiat Isot,
                            2006.
                          23. W. L. Rogers, N. H. Clinthorne, and A. Bolozdynya, in Emission Tomography: The Fundamentals of SPECT
                            and PET, edited by M. N. Wernick and J. N. Aarsvold (Elsevier, San Diego, 2004), pp. 383–420.
                          24. T. K. Lewellen, Time-of-flight PET, Semin Nucl Med, 28(3):268–75, 1998.
                          25. S. Surti, J. S. Karp, L. M. Popescu, M. E. Daube-Witherspoon, and M. Werner, Investigation of time-of-flight
                            benefit for fully 3-D PET, IEEE Trans Med Imaging, 25(5):529–38, 2006.
                          26. S. Surti, A. Kuhn, M. E. Werner, A. E. Perkins, J. Kolthammer, and J. S. Karp, Performance of Philips Gemini
                            TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities,  J Nucl Med,
                            48(3):471–80, 2007.
                          27. G. Muehllehner and J. S. Karp, Positron emission tomography, Phys Med Biol, 51(13):R117–37, 2006.
                          28. C. L. Melcher, Perspectives on the future development of new scintillators, Nucl Instrum Methods Phys Res
                            Sec A, 537:6–14, 2005.
                          29. T. Ling, T. K. Lewellen, and R. S. Miyaoka, Depth of interaction decoding of a continuous crystal detector
                            module, Phys Med Biol, 52(8):2213–28, 2007.
   364   365   366   367   368   369   370   371   372   373   374