Page 320 - Calculus Demystified
P. 320

Chapter 7
                                   We may now solve for the desired integral:                    307
                                                1            1
                                                  x
                                                 e sin xdx =   [e · sin 1 − e · cos 1] .
                                              0              2
                                                                      2
                              (b)  Integrate by parts with u = ln x, dv = x dx. Thus
                                              e                  3 e     e  3  1

                                                 2              x         x
                                               x ln xdx = ln x ·     −       ·  dx
                                             1                  3    1  1  3  x
                                                                            3 e
                                                              e 3    1 3   x
                                                         = 1 ·  − 0 ·   −
                                                              3       3    6    1
                                                           e 3  e 3  1 3
                                                         =    −    +   .
                                                            3    9    9
                              (c)  We write
                                                   2x + 1     1    1     −1
                                                           =    +    +       .
                                                   2
                                                  x (x + 1)   x   x 2   x + 1
                                   Thus

                                      4  (2x + 1)dx    4  1       4  1       4  −1
                                                   =       dx +       dx +          dx
                                          3
                                     2   x + x 2      2  x       2 x 2      2  x + 1

                                                                    −1   −1
                                                   =[ln 4 − ln 2]+     −      +[ln 3 − ln 5]
                                                                    4     2
                                                       6    1
                                                   = ln  + .
                                                       5    4
                              (d)  We write
                                              π                 1   π

                                                  2     2               2
                                               sin x cos xdx =       sin 2xdx
                                             0                  4  0
                                                                     π
                                                                1     1 − cos 4x
                                                              =                 dx
                                                                4  0      2
                                                                              π
                                                                1      sin 4x
                                                              =    x −
                                                                8        4    0
                                                                1
                                                              =   [(π − 0) − (0 − 0)]
                                                                8
                                                                π
                                                              =   .
                                                                8
   315   316   317   318   319   320   321   322   323   324   325