Page 317 - Calculus Demystified
P. 317

304

                                                                         Solutions to Exercises
                                        (d)  Notice that  t sin 3t cos 3tdt =  1  t sin 6tdt. Now let u = t and
                                                                         2
                                             dv = sin 6tdt. Then

                                              1              1        1                1
                                                  t sin 6tdt =  t · − cos 6t −       − cos 6t · 1 dt
                                              2              2        6                6
                                                                t         1
                                                           =−     cos 6t +   sin 6t + C.
                                                               12         72
                                  2. We do (a), (b), (c), (d).
                                                   1         −1/7     1/7
                                        (a)                =       +       hence
                                             (x + 2)(x − 5)  x + 2   x − 5

                                                           dx            −1/7       1/7
                                                                    =          +
                                                      (x + 2)(x − 5)     x + 2      x − 5
                                                                      −1             1
                                                                    =     ln |x + 2|+  ln |x − 5|+ C.
                                                                       7             7
                                                   1           1/2    −x/2 + 1/2
                                        (b)                 =       +             hence
                                                                          2
                                                     2
                                             (x + 1)(x + 1)   x + 1      x + 1

                                                       dx           1/2        −x/2         1/2
                                                               =        dx+         dx+          dx
                                                         2
                                                                                            2
                                                                                2
                                                 (x+1)(x +1)       x+1         x +1        x +1
                                                                 1          1    2      1   −1
                                                               = ln|x+1|− ln|x +1|+ Tan       x+C.
                                                                 2          4           2
                                                        2
                                                   3
                                        (c)  Now x − 2x − 5x + 6 = (x − 3)(x + 2)(x − 1). Then
                                                            1            1/10    1/15    −1/6
                                                                      =       +       +       .
                                                            2
                                                      3
                                                    x − 2x − 5x + 6      x − 3   x + 2   x − 1
                                            As a result,

                                                     dx            1/10        1/15       −1/6
                                                              =         dx+        dx+         dx
                                                      2
                                                 3
                                               x −2x −5x+6         x−3         x+2        x−1
                                                                 1           1           1
                                                              =    ln|x−3|+    ln|x+2|− ln|x−1|+C.
                                                                 10          15          6
                                                   4
                                                                    2
                                                            2
                                                                                           2
                                        (d)  Now x − 1 = (x − 1)(x + 1) = (x − 1)(x + 1)(x + 1).
                                             Hence
                                                            x       1/4     1/4    −x/2
                                                                =       +       +        .
                                                                                    2
                                                           4
                                                         x − 1     x − 1   x + 1   x + 1
                                             We conclude that

                                                  xdx      1           1            1     2
                                                        =   ln |x − 1|+  ln |x + 1|−  ln |x + 1|+ C.
                                                   4
                                                 x + 1     4           4            4
   312   313   314   315   316   317   318   319   320   321   322