Page 314 - Calculus Demystified
P. 314

Chapter 6
                        5. We do (a) and (b).                                                    301
                                                2
                                              x + 1
                                            3
                              (a)  Let A = x ·       . Then
                                                3
                                              x − x
                                                               2
                                                                           3
                                              ln A = 3ln x + ln(x + 1) − ln(x − x)
                                   hence
                                                                              2
                                           dA/dx     d         3     2x     3x − 1
                                                  =     ln A =   +        −        .
                                                                    2
                                                                              3
                                             A       dx        x   x + 1    x − x
                                   Multiplying through by A gives
                                                      2                        2
                                         dA       3  x + 1     3     2x     3x − 1
                                             = x ·           ·   +        −          .
                                                                              3
                                                      3
                                                                     2
                                         dx         x − x      x   x + 1     x − x
                                                  3
                                           sin x · (x + x)
                              (b)  Let A =              . Then
                                              2
                                             x (x + 1)
                                                             3           2
                                          ln A = ln sin x + ln(x + x) − ln x − ln(x + 1)
                                   hence
                                                                     2
                                       dA/dx      d        cos x  3x + 1    2x      1
                                              =     ln A =      +         −    −       .
                                                                    3
                                          A      dx        sin x   x + x     x 2  x + 1
                                   Multiplying through by A gives
                                                   3                   2
                                   dA      sin x · (x + x)   cos x   3x + 1    2x     1
                                       =                   ·      +         −     −        .
                                                                      3
                                               2
                                    dx       x (x + 1)       sin x   x + x     x 2  x + 1
                        6. Let R(t) denote the amount of substance present at time t. Let noon on
                            January 10 correspond to t = 0 and noon on February 10 correspond to
                            t = 1. Then R(0) = 5 and R(1) = 3. We know that
                                                     R(t) = P · e Kt  .
                            Since
                                                   5 = R(0) = P · e K·0 ,

                            we see that P = 5. Since
                                                   3 = R(1) = 5 · e K·1 ,

                            we find that K = ln 3/5. Thus
                                                                        t
                                                                      3
                                                        t ln(3/5)
                                              R(t) = 5 · e     = 5 ·     .
                                                                      5
   309   310   311   312   313   314   315   316   317   318   319