Page 309 - Calculus Demystified
P. 309

Solutions to Exercises
                     296
                                        (f)  Since lim x→−∞ ln |x|= lim x→−∞ e −x  =+∞, l’Hôpital’s Rule
                                             applies. Thus
                                                                 ln |x|        1/x
                                                            lim       = lim         = 0.
                                                          x→−∞ e  −x    x→−∞ −e  −x
                                                                       x 3
                                                                                          3
                                  3.    (a)  Wewritethelimitaslim x→+∞    .Sincelim x→+∞ x = lim x→+∞
                                                                       e x
                                              x
                                             e =+∞, l’Hôpital’s Rule applies. Thus
                                                                            x 3        3x 2
                                                              3 −x
                                                         lim x e   = lim       = lim       .
                                                       x→+∞           x→+∞ e x   x→+∞ e  x
                                             We apply l’Hôpital’s Rule again to obtain
                                                                            6x
                                                                   = lim       .
                                                                      x→+∞ e x
                                            Applying l’Hôpital’s Rule one last time yields
                                                                           6
                                                                  = lim      = 0.
                                                                    x→+∞ e x

                                                                        sin(1/x)
                                        (b)  We write the limit as lim x→+∞    . Since lim x→+∞ sin(1/x)
                                                                          1/x
                                             = lim x→+∞ 1/x = 0, l’Hôpital’s Rule applies. Hence
                                                                             sin(1/x)
                                                     lim x · sin[1/x]= lim
                                                   x→+∞                x→+∞    1/x
                                                                                             2
                                                                             [cos(1/x)]·[−1/x ]
                                                                    = lim
                                                                       x→+∞        −1/x 2
                                                                             cos(1/x)
                                                                    = lim            = 1.
                                                                       x→+∞     1
                                                                           ln[x/(x + 1)]
                                        (c)  We rewrite the limit as lim x→+∞          . Since lim x→+∞
                                                                            1/(x + 1)
                                             ln[x/(x +1)]= lim x→+∞ 1/(x +1) = 0, l’Hôpital’s Rule applies.
                                             Thus
                                                                               ln[x/(x + 1)]
                                              lim ln[x/(x + 1)]· (x + 1) = lim
                                             x→+∞                        x→+∞    1/(x + 1)
                                                                                                    2
                                                                               [(x + 1)/x]·[1/(x + 1) ]
                                                                       = lim
                                                                         x→+∞        −1/(x + 1) 2
                                                                               −(x + 1)
                                                                       = lim            .
                                                                         x→+∞      x
   304   305   306   307   308   309   310   311   312   313   314