Page 307 - Calculus Demystified
P. 307

Solutions to Exercises
                     294
                                             Now l’Hôpital’s Rule applies again to yield
                                                                      − cos x    1
                                                               = lim         =− .
                                                                  x→0 2 − 6x     2
                                                                                2
                                                                                     4
                                        (b)  lim x→0 e 2x  − 1 − 2x = 0 and lim x→0 x + x = 0 so l’Hôpital’s
                                             Rule applies. Thus
                                                              e 2x  − 1 − 2x     2e 2x  − 2
                                                          lim             = lim          .
                                                                 2
                                                         x→0    x + x 4     x→0 2x + 4x 3
                                             l’Hôpital’s Rule applies again to yield
                                                                        4e 2x
                                                                = lim          = 2.
                                                                  x→0 2 + 12x 2
                                        (c)  lim x→0 cos x  = 0, so l’Hôpital’s Rule does not apply. In fact the
                                             limit does not exist.
                                                        2
                                        (d)  lim x→1 [ln x] = 0 and lim x→1 (x − 1) = 0 so l’Hôpital’s Rule
                                             applies. Thus
                                                                   2
                                                              [ln x]        [2ln x]/x
                                                          lim        = lim           = 0.
                                                          x→1 (x − 1)   x→1    1
                                                          3
                                        (e)  lim x→2 (x − 2) = 0 and lim x→2 sin(x − 2) − (x − 2) = 0so
                                             l’Hôpital’s Rule applies. Thus
                                                             (x − 2) 3              3(x − 2) 2
                                                    lim                    = lim               .
                                                   x→2 sin(x − 2) − (x − 2)  x→2 cos(x − 2) − 1
                                             Now l’Hôpital’s Rule applies again to yield
                                                                        6(x − 2)
                                                                = lim             .
                                                                  x→2 − sin(x − 2)
                                             We apply l’Hôpital’s Rule one last time to obtain
                                                                         6
                                                             = lim              =−6.
                                                               x→2 − cos(x − 2)
                                                     x
                                        (f)  lim x→1 (e − 1) = 0 and lim x→1 (x − 1) = 0 so l’Hôpital’s Rule
                                             applies. Thus
                                                                   x
                                                                  e − 1        e x
                                                              lim       = lim    = e.
                                                             x→1 x − 1    x→1 1
                                                                           2
                                                       3
                                                                      x
                                  2.    (a)  lim x→+∞ x = lim x→+∞ (e − x ) =+∞ so l’Hôpital’s Rule
                                             applies. Thus
                                                                   x 3             3x 2
                                                            lim         = lim           .
                                                                                  x
                                                                 x
                                                          x→+∞ e − x  2   x→+∞ e − 2x
   302   303   304   305   306   307   308   309   310   311   312