Page 308 - Calculus Demystified
P. 308

Chapter 5
                                   l’Hôpital’s Rule applies again to yield                       295
                                                                  6x
                                                        = lim         .
                                                                 x
                                                          x→+∞ e − 2
                                   l’Hôpital’s Rule applies one more time to finally yield
                                                                6
                                                          lim     = 0.
                                                         x→+∞ e x

                              (b)  lim x→+∞ ln x = lim x→+∞ x =+∞ so l’Hôpital’s Rule applies.
                                   Thus
                                                      ln x         1/x
                                                 lim      = lim        = 0.
                                                x→+∞ x       x→+∞ 1
                              (c)  lim x→+∞ e −x  = lim x→+∞ ln[x/(x + 1)]= 0 so l’Hôpital’s Rule
                                   applies. Thus

                                                    e −x                  −e −x
                                           lim               = lim                  .
                                          x→+∞ ln[x/(x + 1)]   x→+∞ 1/x − 1/[x + 1]
                                   It is convenient to rewrite this expression as
                                                                2
                                                               x + x
                                                          lim        .
                                                         x→+∞ −e   x
                                   Now l’Hôpital’s Rule applies once more to yield

                                                               2x + 1
                                                          lim        .
                                                         x→+∞ −e   x
                                   We apply l’Hôpital’s Rule a last time to obtain
                                                                 2
                                                       = lim        = 0.
                                                         x→+∞ −e  x
                              (d)  Sincelim x→+∞ sin x doesnotexist,l’Hôpital’sRuledoesnotapply.
                                   In fact the requested limit does not exist.
                              (e)  It is convenient to rewrite this limit as
                                                                 x
                                                           lim      .
                                                          x→−∞ e −x

                                   Since lim x→−∞ x = lim x→−∞ e −x  =±∞, l’Hôpital’s Rule
                                   applies. Thus

                                                        x             1
                                                  lim      = lim          = 0.
                                                 x→−∞ e −x    x→−∞ −e  −x
   303   304   305   306   307   308   309   310   311   312   313