Page 310 - Calculus Demystified
P. 310

Chapter 5
                                   Now l’Hôpital’s Rule applies again and we obtain              297
                                                               −1
                                                      = lim        =−1.
                                                         x→+∞ 1
                                                                 [ln x]
                              (d)  We rewrite the limit as lim x→+∞   . Since lim x→+∞ ln x =
                                                                  e x
                                             x
                                   lim x→+∞ e =+∞, l’Hôpital’s Rule applies. Thus
                                                                 ln x        1/x
                                                     −x
                                           lim ln x · e  = lim       = lim       = 0.
                                         x→+∞             x→+∞ e  x    x→+∞ e  x
                                                                 x 2
                                                                                        2
                              (e)  We write the limit as lim x→−∞   . Since lim x→−∞ lim x =
                                                                e −2x
                                   lim x→−∞ e −2x  = 0, l’Hôpital’s Rule applies. Thus
                                                                 x 2           2x
                                                     2
                                           lim e 2x  · x = lim       = lim          .
                                          x→−∞           x→−∞ e  −2x   x→−∞ −2e  −2x
                                   l’Hôpital’s Rule applies one more time to yield
                                                                 2
                                                      = lim          = 0.
                                                        x→−∞ 4e  −2x
                                                                  e 1/x
                              (f)  We rewrite the limit as lim x→0    . Since lim x→0 e 1/x  =
                                                                 [1/x]
                                   lim x→0 1/x =+∞, l’Hôpital’s Rule applies. Thus
                                                                         2
                                                   e 1/x      e 1/x  ·[−1/x ]     e 1/x
                                   lim x·e 1/x  = lim  = lim               = lim      =+∞ .
                                   x→0         x→0 1/x    x→0    −1/x 2       x→0 1
                        4. We do (a), (b), (c), (d).
                                     1                  1                 x 1/4
                                                                                1
                              (a)     x −3/4  dx = lim   x −3/4  dx = lim
                                    0            (→0 +  (           (→0 +  1/4  (
                                                         1/4   1/4
                                                       1      (
                                              = lim         −       = 4.
                                                 (→0 +  1/4   1/4
                                     3                       3−(

                              (b)     (x − 3) −4/3  dx = lim    (x − 3) −4/3  dx
                                    1                 (→0 +  1
                                                          3−(
                                                    −1/3                 −1/3     −1/3
                                             (x − 3)                  −(       −2
                                     = lim                   = lim           −          . But
                                       (→0 +    −1/3     1     (→0 +   −1/3     −1/3
                                   the limit does not exist; so the integral does not converge.
                                     2     1                 −1−(    1

                              (c)               dx = lim                   dx
                                    −2 (x + 1) 1/3    (→0 +  −2  (x + 1) 1/3
   305   306   307   308   309   310   311   312   313   314   315