Page 318 - Calculus Demystified
P. 318

Chapter 7
                        3. We do (a), (b), (c), (d).                                             305
                              (a)  Let u = sin x, du = cos xdx. Then the integral becomes
                                                                        2 3
                                                                  (1 + u )
                                                       2 2
                                                 (1 + u ) 2udu =           + C.
                                                                      3
                                   Resubstituting x, we obtain the final answer
                                                                             2  3
                                                 2   2                (1 + sin x)
                                          (1 + sin x) 2 sin x cos xdx =           + C.
                                                                           3
                                          √            √
                              (b)  Let u =  x, du = 1/[2 x] dx. Then the integral becomes

                                                     2 sin udu =−2 cos u + C.

                                   Resubstituting x, we obtain the final answer
                                                       √

                                                    sin  x            √
                                                     √    dx =−2 cos    x + C.
                                                       x
                              (c)  Let u = ln x, du =[1/x] dx. Then the integral becomes

                                                         1                1
                                           cos u sin udu =    sin 2udu =− cos 2u + C.
                                                         2                4
                                   Resubstituting x, we obtain the final answer

                                             cos(ln x) sin(ln x)     1
                                                             dx =− cos(2ln x) + C.
                                                    x                4
                                                        2
                              (d)  Let u = tan x, du = sec xdx. Then the integral becomes

                                                                  u
                                                          u
                                                         e du = e + C.
                                   Resubstituting x, we obtain the final answer

                                                            2
                                                    e tan x  sec xdx = e tan x  + C.
                        4. We do (a), (b), (c), (d).

                              (a)  Let u = cos x, du =− sin xdx. Then the integral becomes
                                                                   u 3
                                                          2
                                                     −   u du =−      + C.
                                                                   3
                                   Resubstituting x, we obtain the final answer
                                                                       3
                                                          2         cos x
                                                   sin x cos xdx =−       + C.
                                                                      3
   313   314   315   316   317   318   319   320   321   322   323