Page 126 - Calculus Workbook For Dummies
P. 126

110       Part III: Differentiation



                                                          / 2 3
                                                      2
                    c Locate the local extrema of  y = _ x -  8i with the first derivative test. Local mins at  - 2  , 2 0j
                                                                                                 `
                         and  2 2 0j; a local max at  0 4i.
                                                    ,
                                 ,
                                                  _
                             `
                         Same basic steps as problems 1 and 2, but abbreviated a bit.
                         1. Find the derivative.
                                      / 2 3
                                  2
                             y = _ x -  8i
                                2  2    -  / 1 3  4 x
                            y = l  _ x -  8i  2 ^  x =
                                            h
                                3              3  3  x -  8
                                                   2
                         2. Find the critical numbers.
                                4 x
                                      =  0
                                  2
                           a. 3  3  x -  8
                                    x =  0
                           b. The first derivative will be undefined when the denominator is zero, so
                                        2
                                   3  3  x -  8 =  0
                                      x -  8 =  0
                                     3  2
                                        2
                                          8
                                      x - =  0
                                           2
                                         x =  8
                                          x =  ! 2 2
                           The critical numbers are  2 2, 0, and 2 2.
                                                 -
                         3. Test the values.
                                     2      2   -  / 1 3                   2     2   -  / 1 3
                                                                        1 =
                                                                                1 -
                                                                     l ^
                            y - 10 =   ^ a  - 10 -  8k  ` 2 $ ^ - 10hj  y - h  ^ a  - h  8k  ` 2 $ ^ - 1hj
                                  h
                             l ^
                                           h
                                     3                                     3
                                     2        -  / 1 3                     2           -  / 1 3
                                   = _ positivei  $  negative             = $ _ negativei  $  negative
                                     3                                     3
                                     2                                     2
                                                                                     $
                                              $
                                   =   positive negative                  = $  negative negative
                                     3                                     3
                                   =  negative                            =  positive
                               y 1 =  negative and  y 10 =  positive  _ What? I should do all your work?i
                                                      h
                                                  l ^
                                l ^ h
                         4. Make a sign graph (see the following figure).
                                          decreasing  increasing  decreasing  increasing
                                              –        +         –        +
                                                            0
                         5. Find the y-values.
                                           / 2 3
                                       2
                                      j
                            y = ` c  - 2 2 -  8m  =  0 There’s a local min at  - 2  , 2 0j.
                                                                  `
                                      / 2 3  / 2 3
                                 2
                                        ^
                            y = _ 0 -  8i  = - 8h  =  4 There’s a local max at (0, 4).
                                          / 2 3
                                     2
                                                                           ,
                                                                       `
                                     j
                            y = ` c  2 2 -  8m  =  0 There’s another local min at  2 2 0j. Check out this interesting curve
                            on your graphing calculator.
   121   122   123   124   125   126   127   128   129   130   131