Page 132 - Calculus Workbook For Dummies
P. 132

116       Part III: Differentiation



                                                              / 4 5
                                                                 5
                                                   ^
                                                                                 7
                    k Find the absolute extrema of p x = ^h  x +  1h  -  . x on the interval  -  , 2 31A. Absolute max at
                         (–2, 2); absolute mins at (–1, .5) and (31, .5).
                         I think you know the steps by now.
                                             / 4 5
                                                5
                                 p x = ^h  x +  1h  -  . x
                                   ^
                                        4     -  / 1 5
                                 p x =   ^ x +  1h  -  .5
                                  l ^ h
                                        5
                                           4
                                      =        / 1 5 -  .5
                                        5^ x +  1h
                                           4
                                    0 =        / 1 5 -  .5
                                        5^ x +  1h
                                           4
                                    .5 =       / 1 5
                                        5^ x +  1h
                                     / 1 5
                             . 2 5^  x +  1h  =  4
                                     / 1 5  8
                               ^  x +  1h  =
                                        5
                                          5
                                        8
                                    1 = c m
                                ^ x + h
                                         5
                                    x =  . 9 48576
                         That’s one critical number, but x = –1 is also one because it produces an undefined derivative.
                                               / 4 5
                                    1 = - +
                                                   ^
                                  ^
                                 p - h  ^  1  1h  -  .5 - 1h
                                      =  .5
                                                   / 4 5
                                               +
                            p ^  . 9 48576 = ^h  . 9 48576 1h  -  .5 9 ^  .48576h
                                      .  . 1 81072
                                                    / 4 5
                                         2 = - +
                                                          2 =
                                                        ^
                         Left endpoint: p - h  ^  2  1h  -  .5 - h  2
                                       ^
                                                    / 4 5
                                                         ^
                                                           h
                         Right endpoint: p 31 = ^h  31 +  1h  -  .5 31 =  16 -  15 .5 =  .5
                                        ^
                         Your absolute max is at the left endpoint: (–2, 2). There’s a tie for the absolute min: At the cusp:
                         (–1, .5) and at the right endpoint: (31, .5).
                                                                                      π 5 π
                                                            2
                    l Find the absolute extrema of q x =  2 cos x +  4 sinx on the interval  - ;  2  ,  4  E. Absolute min at
                                                   ^ h
                         c -  π  , - 6m; absolute maxes at c  π , 3m and c  5 π , 3m.
                           2                        6          6
                                       2
                             q x =  2 cos x +  4 sinx
                              ^ h
                                        2 $
                            q x = - 2 sin x 2 +  4 cosx
                             l ^ h
                                        2
                                0 = - 4 sin x +  4  cosx
                                0 =  sin x -  cosx _ dividing by - 4i
                                      2
                                       x
                                0 =  2 sin cosx -  cosx _ trig identityi
                                0 =  cosx 2 ^  sinx -  1h
                                               2  sinx - =  0
                                                      1
                            cosx =  0
                                                         1
                                   - π π  or       sinx =
                               x =   ,                   2
                                   2   2
                                                          ,
                                                      x =  π 5 π
                                                         6  6
   127   128   129   130   131   132   133   134   135   136   137