Page 190 - Calculus Workbook For Dummies
P. 190

174       Part IV: Integration and Infinite Series




                   *k    Use sigma notation to express an 8-right-rectangle approximation of the area under
                                 2
                         g x =  2 x +  5 from 0 to 4. Then compute the approximation. The notation and approximation
                          ^ h
                              8
                            1
                         are !  i +  20 71.
                                 2
                                      =
                            4 i 1
                              =
                         1. Sketch g xh. You’re on your own.
                                   ^
                                                                    $
                         2. Express the basic idea of your sum:  ! _ base heighti.
                                                          8 rectangles
                         3. Figure the base and plug in.
                                  4 -  0  1
                            base =     =
                                    8    2
                               1          1
                                       m
                            !c   $ height = ! height
                             8  2         2 8
                         4. Express the height as a function of the index of summation, and add the limits of summation:
                           1  8  1
                               f ! c  im
                           2 i 1=  2
                                                      2
                         5. Plug in your function, g x =  2 x +  5.
                                               ^ h
                              1  8  1  2
                            = !>  2 c  i +  5H
                                      m
                              2 i 1  2
                                =
                                    1  8  1  2  1  8   8  1  2  2  1  1  8  2
                                        2
                         6. Simplify: = ! c  i + ! 5 = !c m  i + $ 40 = ! i +  20
                                            m
                                    2 i 1  2    2 i 1  i 1  2  2      4 i 1
                                      =
                                                  =
                                                       =
                                                                        =
                                                                    1 2 8 +
                                                                ^
                                                             1  8 8 + h ^  $  1h
                                                                                           =
                                                                                   =
                         7. Use the sum of squares rule to finish: = e        o  +  20 51 +  20 71
                                                             4        6
                   *l    Using your result from problem 11, write a formula for approximating the area under g from
                                                                2
                                                           188 n +  192 n +  64
                         0 to 5 with n rectangles. The formula is   2      .
                                                                 3 n
                         1. Convert the sigma formula for summing 8 rectangles to one for summing n rectangles.
                                                                          1                     1
                           Look at Step 5 from the previous solution. The number   appears twice. You got   when you
                                                                          2                     2
                                                                                    4
                           computed the width of the base of each rectangle. That’s   4 -  0  , or  . You want a formula for
                                                                              8     8
                                                       4          1
                           n rectangles instead of 8, so use   instead of   and replace the 8 on top of ! with an n.
                                                       n          2
                            4  n   4  2
                                     m
                            n  !> 2 c n  i +  5H
                              i 1=
                                    4  n  4   2  4  n  4  n   16  2   4     128  n  2
                                        2
                         2. Simplify: = ! c n  im  + ! 5 = !d 2 $  2  i $  n  +  n  5 $  n =  3  ! i +  20
                                                       n
                                    n
                                                n
                                      i 1=        i 1=  i 1=  n              n  i 1=
                         3. Use the sum of squares formula.
                                                          2
                                                                               2
                                   ^
                              128  n n +  1 2 ^h  n +  1h  128 n +  192 n +  64  188 n +  192 n +  64
                            =  3 e              o  +  20 =           +  20 =
                              n         6                   3 n 2                3 n  2
                    m a. Use your result from problem 12 to approximate the area with 50, 100, 1000 and 10,000
                           rectangles.
                                        2
                                    188 n +  192 n +  64
                            Area nR =
                                          3 n  2
                                                $
                                          2
                                       $
                                    188 50 +  192 50 +  64
                            Area 50 =          2
                                            $
                                 R
                                           3 50
                                  .  63 .956
   185   186   187   188   189   190   191   192   193   194   195