Page 192 - Calculus Workbook For Dummies
P. 192

176       Part IV: Integration and Infinite Series



                         2. Plug these values into the formula.
                               π -  0         π       2 π     3 π          7 π
                           T 8 =   c sin0 +  2 sin  +  2 sin  +  2 sin  +  ... +  2 sin  +  sinπm
                               2 8 $          8       8        8            8
                                π
                             .   ^ 0 +  .765 +  . 1 414 +  . 1 848 ... + h  . 1 974
                                                         0 .
                               16
                           The percent error is 1.3%.
                    p Estimate the same area with 16 and 24 trapezoids and compute the percent error.
                               π -  0          π       2 π      3 π         15 π
                           T 16 =   c sin0 +  2 sin  +  2 sin  +  2 sin  +  ... +  2  sin  +  sinπm
                                 $
                               2 16            16      16       16           16
                                π
                                                     0 .
                             .    ^ 0 +  .390 +  .765 +  ... + h  . 1 994
                                32
                           The percent error for 16 trapezoids is 0.321%.
                               π -  0          π       2 π      3 π          23 π
                           T 24 =   c sin0 +  2 sin  +  2 sin  +  2 sin  +  ... +  2 sin  +  sinπm
                                 $
                               2 24            24      24       24           24
                                π
                                                     0 .
                              .   ^ 0 +  .261 +  .518 +  ... + h  . 1 997
                                48
                           The percent error for 24 trapezoids is 0.143%.
                    q Approximate the same area with eight Simpson’s rule “trapezoids” and compute the percent
                         error. The area for 8 “trapezoids” is 2.00001659 and the error is 0.000830%.
                         For 8 Simpson’s “trapezoids”:
                         1. List the values for a, b, and n, and determine the x-values x 0 through x 16 , the 9 edges and the
                           8 base midpoints of the 8 curvy-topped “trapezoids.”
                             a =  0
                             b π
                              =
                             n =  16
                                      π      2 π    3 π
                            x 0 =  0 , x 1 =  , x 2 =  , x 3 =  , ... x 16 =  π
                                      16     16     16
                         2. Plug these values into the formula.
                               π -  0          π      2 π     3 π      4 π         15 π
                           S 16 =   c sin0 +  4  sin  +  2  sin  +  4  sin  +  2 sin  +  ... +  4  sin  +  sinπm
                                 $
                               3 16           16      16      16       16           16
                                π
                                                                           0 .
                              .   ^ 0 +  .7804 +  .7654 +  . 2 2223 +  . 1 4142 +  ... +  . 0 7804 + h  . 2 00001659
                                48
                         The percent error for eight Simpson “trapezoids” is 0.000830%.
                    r Use the following shortcut to figure S 20 for the area under lnx from 1 to 6.
                         Using the formula in the problem, you get:
                                 M n +  M n +  T n
                            S n2 =
                                      3
                                 M 10 +  M 10 +  T 10
                            S 20 =
                                      3
                                  . 5 759 +  . 5 759 +  . 5 733
                               .
                                         3
                               .  . 5 750
                           This agrees (except for a small round-off error) with the result obtained the hard way in the
                           Simpson’s rule example problem.
   187   188   189   190   191   192   193   194   195   196   197