Page 189 - Calculus Workbook For Dummies
P. 189

173
                                                                         Chapter 9: Getting into Integration



                    d Use 8 left, right, and midpoint rectangles to approximate the area under sinx from 0  to π.
                           Let’s cut to the chase. Here are the computations for 8 left rectangles, 8 right rectangles, and 8
                           midpoint rectangles:
                                   π          π     2 π    3 π    4 π     5 π    6 π    7 π
                           Area LR8 =  c sin0 +  sin  +  sin  +  sin  +  sin  +  sin  +  sin  +  sin  m
                                   8          8      8      8      8      8      8      8
                                   π                                       π
                                                        1
                                 =  ^ 0 +  .383 +  .707 +  .924 + +  .924 +  .707 +  .383 =  ^  . 5 027 =  . 1 974
                                                                                  h
                                                                        h
                                   8                                       8
                                   π    π      2 π    3 π    4 π    5 π    6 π    7 π
                                 =   c sin  +  sin  +  sin  +  sin  +  sin  +  sin  +  sin  +  sinπm
                           Area RR8
                                   8    8      8      8       8      8      8      8
                                   π                                       π
                                                                       0 =
                                                     1
                                 =   ^ .383 +  .707 +  .924 + +  .924 +  .707 +  .383 + h  ^  . 5 027 =  . 1 974
                                                                                  h
                                   8                                       8
                                   π    π     3 π    5 π    7 π   9 π    11 π   13 π    15 π
                           Area 8  MR =  8  c sin  16  +  sin  16  +  sin  16  +  sin  16  +  sin  16  +  sin  16  +  sin  16  +  sin  16  m
                                   π                                         π
                                 =  ^ .195 +  .556 +  .831 +  .981 +  .981 +  .831 +  .556 +  .195 =  ^  . 5 126 =  . 2 013
                                                                          h
                                                                                   h
                                   8                                         8
                           The exact area under sinx from 0  to π has the wonderfully simple answer of 2. The error of
                           the midpoint rectangle estimate is 0.65%, and the other two have an error of 1.3%. The left
                           and right rectangle estimates are the same, by the way, because of the symmetry of the sine
                           wave.
                         10
                    e !    4 =  40
                         =
                         i 1
                         As often happens with many types of problems in mathematics, this very simple version of a
                         sigma sum problem is surprisingly tricky. Here, there’s no place to plug in the i, so all the i does
                         is work as a counter:
                             10
                            ! 4 = + + + + + + + + + =          10 4 =  40
                                                                 $
                                       4
                                                   4
                                    4
                                          4
                                                4
                                             4
                                 4
                                                      4
                                                         4
                                                            4
                            i 1
                             =
                         9    i    2
                    f !^    - 1 ^h  i 1 = - 55
                                 + h
                         i =  0
                                 0     2     1     2     2     2
                                                              1 +
                                                  1 + -
                            = - 1 ^h  0 + h  ^  1 1 + h  ^  1 ^h  2 + h  ...
                                      1 + - h
                             ^
                                              ^
                                         2
                                                   2
                                                       2
                                                2
                                            2
                                                           2
                                     2
                                  2
                              2
                            = 1 -  2 +  3 -  4 +  5 -  6 +  7 -  8 +  9 -  10  2
                            = - 55
                         50
                             2
                    g !_     i 3 +  i 2 i  =  131 ,325
                         =
                         i 1
                                                 50
                             50
                                   50
                                          50
                           =!  i 3 + !  i 2 = ! i + ! i
                                2
                                             2
                                        3
                                               2
                            i 1    i 1    i 1   i 1
                                          =
                             =
                                   =
                                                 =
                                      1 2 50 +
                               50 50 + h ^  $  1h     50 50 +  1h
                                                        ^
                                 ^
                           = 3 e                o  +  2 e      o  =  131 ,325
                                       6                 2
                                                     12       7            7
                    h    30 +  35 +  40 +  45 +  50 +  55 + 60 = ! 5 k or ! ^ k +  5h  or !^ 5 k +  25h
                                                               5
                                                                            =
                                                              =
                                                    k =  6   k 1           k 1
                                              6       5       3
                    i    8 +  27 +  64 +  125 + 216 = ! k  3  or !^ k +  1h Did you recognize this pattern?
                                             k 2      k 1
                                              =
                                                       =
                                                                    10   i      10    i
                    j    - 2 + - +  16 -  32 +  64 -  128 +  256 -  512 +  1024 = !^ - h  i  or !^ - 2h
                             4
                                                                       1 2
                                8
                                                                   i 1          i 1
                                                                    =
                                                                                =
                         To make the terms in a sigma sum alternate between positive and negative, use a –1 raised to a
                         power in the argument. The power will usually be i or i + 1.
   184   185   186   187   188   189   190   191   192   193   194