Page 278 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 278

OBSERVABILITY, CONTROLLABILITY AND STABILITY                 267

              An approach to find out whether the system is observable is to con-
            struct the observability Gramian (Bar-Shalom and Li, 1993). From (8.14):

             2       3   2                3  2                   3
                zðiÞ          HðiÞxðiÞ                HðiÞ
              zði þ 1Þ     Hði þ 1Þxði þ 1Þ       Hði þ 1ÞFðiÞ
             6       7   6                7  6                   7
             6       7   6                7  6                   7
                       ¼                   ¼                      xðiÞð8:15Þ
             6       7   6                7  6                   7
             6  zði þ 2Þ7  6  Hði þ 2Þxði þ 2Þ7  6  Hði þ 2ÞFðiÞFði þ 1Þ7
                  .               .                     .
             4       5   4                5  4                   5
                  .               .                     .
                  .               .                     .
            Equation (8.15) is of the type z ¼ Hx. The least squares estimate is
                          T
                  T
                       1
            ^ x x ¼ (H H) H z. See Section 3.3.1. The solution exists if and only if
                                                                  T
                          T
            the inverse of H H exists, or in other words, if the rank of H H is equal
            to the dimension M of the state vector. Equivalent conditions are that
                                       T
                                          T
              T
            H H is positive definite (i.e. y H Hy > 0 for every y 6¼ 0), or that the
                           T
            eigenvalues of H H are all positive. See Appendix B.5.
              Translated to the present case, the requirement is that for at least one
            n   0 the observability Gramian G, defined by:
                                                    ! T                   !
                              n           j 1                   j 1
                   T         X           Y                     Y
             G ¼ H ðiÞHðiÞþ       Hði þ jÞ   Fði þ kÞ   Hði þ jÞ   Fði þ kÞ
                             j¼1         k¼0                   k¼0
                                                                       ð8:16Þ
            has rank equal to M. Equivalently we check whether the Gramian is
            positive definite. For time-invariant systems, F and H do not depend on
            time, and the Gramian simplifies to:
                                        n
                                  G ¼  X   HF j   T   HF j             ð8:17Þ
                                       j¼0

            If the system F is stable (the magnitude of all eigenvalues of F are less
            than one), we can set n !1 to check whether the system is observable.
              A second approach to determine the observability of a time-invariant,
            deterministic system is to construct the observability matrix:

                                              H
                                          2       3
                                             HF
                                          6       7
                                          6       7
                                             HF
                                          6     2 7                    ð8:18Þ
                                              .   7
                                     M ¼ 6
                                              .
                                          6       7
                                          4   .   5
                                           HF M 1
   273   274   275   276   277   278   279   280   281   282   283