Page 341 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 341

330                                      WORKED OUT EXAMPLES

              n (t) and u n (t) are eigenvalues and eigenvectors of C zjt . Using (9.16) the
            expression for  (zjt) can be moulded into the following equivalent form:

                                N 1 u n ðtÞu ðtÞ !  N 1  ðz u n ðtÞÞ 2
                                                         T
                                         T
                                                    X
                                X
                   ðzjtÞ¼  z T           n    z ¼                      ð9:17Þ
                                       n ðtÞ              l n ðtÞ
                                n¼0                 n¼0
            The computational savings are obtained by discarding all terms in (9.17) that
            do not capture much information about the true value of t. Suppose that   n
            and u n are arranged according to their importance with respect to the
            estimation, and that above some value of n,say J, the importance is negli-
            gible. With that, the number of terms in (9.17) reduces from N to J. Experi-
            ments show that J is in the order of 10. A speed up by a factor of 1000 is
            feasible.


            Selection of good components
            The problem addressed now is how to order the eigenvectors in (9.17) such
            that the most useful components come first, and thus will be selected. The
            eigenvectors u n (t) are orthonormal and span the whole space. Therefore:

                                   N 1
                                       T      2      2
                                   X
                                      ðz u n ðtÞÞ ¼kzk                 ð9:18Þ
                                   n¼0
            Substitution in (9.17) yields:

                             N 1  T      2  N 1   T     2      2
                             X   ðz u n ðtÞÞ  X  ðz u n ðtÞÞ  kzk
                    ðzjtÞ¼                þ          2        2
                                     n ðtÞ
                             n¼0             n¼0     v        v
                                                                       ð9:19Þ
                           N 1         2               2
                           X     n ðtÞ    v  T   2  kzk
                         ¼              ðz u n ðtÞÞ
                                  n ðtÞ  2             2
                           n¼0        v               v
            The term containing kzk does not depend on t and can be omitted. The
            maximum likelihood estimate for t appears to be equivalent to the one
            that maximizes:


                    N 1                                      2
                    X                                  n ðtÞ
                              T     2                        v
                       
 n ðtÞðz u n ðtÞÞ  with  
 n ðtÞ¼              ð9:20Þ
                                                        n ðtÞ  2
                    n¼0                                     v
            The weight 
 n (t) is a good criterion to measure the importance of an
            eigenvector. Hence, a plot of the 
 n versus n is helpful to find a reasonable
   336   337   338   339   340   341   342   343   344   345   346