Page 131 - Computational Fluid Dynamics for Engineers
P. 131

4.5  Finite-Difference  Methods  for Elliptic  Equations              117



                                                             2
                 uij  -  0 x(u 2j  +  u 0j)  -  0 y(uij+i  +  uij-i)  =  S fij  =  Fij
         and,  with  Eq. (4.5.15a),  it can be written  as
                                 4      1
                  uij  -  0 x(u 2j  +  -uij  -  -u 2j)  -  0 y(u!j+i  +  uij-x)  =  Fij
         or as

                                u
                             0
                                     u
            1
          V  ~  3 ^ )  Ul ^~3 0xU2 d~ y( hj+i^ hj-i)  =  F hj>  2 <j<  J- 1  (4.5.16a)
         For  i  — J, Eq.  (4.5.4b)  becomes
                                     u
                    v>l,j  ~  Ox(u>i+ij + i-i,j)  ~  Oy(u>ij+i +  u j j - i )  =  F / j
         and  with the boundary  condition  at  i =  I  +  1, that  is,

                                        UI+IJ  =  0                       (4.5.15c)
         Eq.  (4.5.4b)  at  i =  I  can be written  as

             UIJ  -  O XUI-IJ  -  O y(uij+i  +  UIJ-I)  =  F / j  2  <  j  <  J  -  1  (4.5.16b)

        For  j  =  1, Eq. (4.5.4b)  becomes
                       ^z,i  -  Oxiui+1,1 +  Wi-i,i)  -  0 y(ui2  +  tt;,o)  = Fi,i

        and,  with  Eq. (4.5.15b), can be written  as

                                                     4      1
                  Ui,i  -  O x(u i+i,i  +  Ui-i ti)  -  0 y(ui2  +  o^i,i  -  0 ^ , 2 )  =  ^ , 1
                                                        1
                                                     o ^ '  "  3
        or as
                               1
                                       e u
                                 Ui 1
                 y
                       1
                         x Ui
                             1
          \ ~  3° )  Ui > ~° ( + > + - ^~% y i2    =  ^ . i '  2<i<  1-1  (4.5.16c)
        For  j  = J,  Eq. (4.5.4b)  becomes
                    Ui,j  -  O x(u i+1j  +  Ui_^j)  -  e y(u ijJ+i  +  Ui,j_i)  =  F^j
        and  with the boundary  condition  at j  =  J  +  1, that  is,
                                        Ui,j+i  =  0                     (4.5.15d)

        Eq.  (4.5.4b)  at j  =  J  can be written  as

            ^i,j  -  Ox{ui+i,j  +  ^ - i , j )  -  O y(uij-i)  =  F i ; J ,  2 <  i  <  J  -  1  (4.5.16d)
        At  i =  j  =  1, Eq. (4.5.4b), with the relations  given by Eqs.  (4.5.15a,b),  becomes

                  /    4     4   \       2        2
                  ( 1 -  g#x -  -6 y  \ ^1,1 -  -0 xu 2,\  -  -0 yui,2  = Fi,i  (4.5.17a)
   126   127   128   129   130   131   132   133   134   135   136