Page 128 - Computational Fluid Dynamics for Engineers
P. 128

114               4.  Numerical  Methods  for  Model Parabolic  and  Elliptic  Equations


                          XQ — 0,  Xi  =  iAx,  i  =  1,2,...  ,1,1+1      (4.5.2a)


                         2/o =  0,  yj=jAy,   j  =  1,2,...,  J,  J  +  1  (4.5.2b)
         subject  to  the  boundary  conditions  specified  at  four  sides  of  the  rectangle

                                i  =  (0,1  +  1)  0<j<J+l                 (4.5.3a)


                                j  =  (0, J  +  1)  0  <  i  <  I  +  1   (4.5.3b)



         n












                                      Fig.  4.7.  Net  points  for  Laplace  difference  equation.



            Replacing  each  second  derivative  in  Eq.  (4.5.1)  by  a  centered  second  differ-
        ence  quotient,  Eq.  (4.3.10),  at  (i,j)  (Fig.  4.7),  we  get



                                      +         /  *  xo     —  JiJ       (4.5.4a)
                        (Ax)                   (Ay?
         or

             X
              M
                                                                          (4.5.4b)
                               l<i<I,          l<j<J
         where
                  (Axf(Ayf                   {Ayf                    (Ax)
          6 2  =    2       2      x                 2     v        2         2
               2[(Ax)  +  (Ay) }'      2[(Ax)2  +  (Ay) }'     2[(Ax)  +  (Ay) }

                                                                           (4.5.5)
            The  linear  equation,  (4.5.4),  yields  a  system  of  IJ  algebraic  equations  with
                                            2
         IJ  unknowns.  Its solution  for the  (I  + )(J +  2)  values  of  u  requires  2(1  +  J)  + 4
         values  from  the  boundary  conditions  which  can  be  obtained  by  using  either
         direct  or iterative methods discussed  in subsections  4.5.1 and  4.5.2,  respectively.
   123   124   125   126   127   128   129   130   131   132   133