Page 124 - Computational Fluid Dynamics for Engineers
P. 124

110               4.  Numerical  Methods  for  Model  Parabolic  and  Elliptic  Equations


              x                    a Unknown
         x , =  d  A               x Known
                                   o "Centering"
                               T
                              h
          x j  -  Vi  t—t—i ,

          */-!                                   Fig.  4.6.  Finite-difference  grid  for  the
                             -H/*i               box method.  Note that  both  h and  k  can
         x 0=0.               -»  —  t           be  nonuniform.  Here  t n_i  =  l/2(t n  +
                  t n  _  i  ^,  _  i/ 2  /„     £ n -i)  and  ^ _ i  =  1/2(XJ  +Xj-i).


            To  solve  Eq.  (4.2.4)  by  this  method,  we  first  express  it  in terms  of  a  system
         of  two  first-order  equations  by  letting

                                             T'=p                        (4.4.22a)
                                       dx
         and  by  writing  Eq.  (4.2.4)  as

                                     dp     ,    ldT
                                                                         (4.4.22b)
                                     dx        a  ot
         Here  the  primes  denote  differentiation  with  respect  to  x.  The  finite-difference
         form  of  the  ordinary  differential  equation  (4.4.22a)  is written  for  the  midpoint
         (£71,2^-1/2)  °f  the  segment  P1P2  shown  in  Fig.  4.6,  and  the  finite-difference
         form  of  the  partial  differential  equation  (4.4.22b)  is  written  for  the  midpoint
                x
         (t"n-i/2-> j-i/2)  of  the  rectangle  P1P2P3P4'  This  gives

                             1    i          +
                              j    .7'-l  Pj  ^.7'-l
                                                    -  Pj-l/2>           (4.4.23a)
                                 hj
                                                         _  n— 1
                 1                               l P i / o - 1 !
                    P.i  P.i-1  ,  Pi   Pj-l
                              +                                          (4.4.23b)
                       hi                       a       ^n
         Rearranging  both  expressions  we  can  write  them  in  the  form

                                Tn_ Tn_ x_h {pn +pn_ i)=^                (4.4.24a)

                      ( Sl) jP?  + {s 2) jPU  + (ss)^  + Tf_ x)  =  Rp l/2.  (4.4.24b)

         Here
                                      (s 2)j  =  - 1 ,  (33)j  =  -A.    (4.4.25a)

                                         J l
                            -"7-1/2  _  Z A  J j-l/2  +  '  P j - l  ^  '  (4.4.25b)
                                           7-I/2
                                                   rj-
                                               lhj
                                          =                              (4.4.25c)
                                             ak„
   119   120   121   122   123   124   125   126   127   128   129