Page 125 - Computational Fluid Dynamics for Engineers
P. 125

4.4  Finite-Difference  Methods  for  Parabolic  Equations            111



            Equations  (4.4.24)  are  imposed  for  j  =  1, , . . . ,  J  —  1.  At  j  =  0  and  J,  we
                                                   2
         have
                                    T 0  =  T W,  Tj  =  T e,              (4.4.26)
         respectively.
            Since  Eqs.  (4.4.23)  are  linear,  as  are the  corresponding  boundary  conditions
         (b.c.)  given  by  Eq.  (4.4.26),  the  system  may  be  written  in  matrix-vector  form
         as  shown  below.
                           To    Po     Tj     Pi       Tj     Pj

         b.c.           :   1    0   '•  0      0
                                -hi            -hi
         Eq.  (4.4.24a)  :  - 1          1
                                 2              2
                           s
         Eq.  (4.4.24b)  :  ( s)j ( 2)j   ( z)j   (*i)i   0    0    :
                                        s
                                s
                                             -h j+i          - / i j + i  :
                        :   0    0      - 1             1
                                                2              2    :
                                       {sz)j   {S2)j   0»3)j   (« 2 )J  1
         b.c.                            0      0       1      0    :


                                      To          (n)o
                                     Po           (»*2)o
                                      Tj          (n)i
                                                                          (4.4.27)
                                      Pj
                                     Tj         f(n)j
                                      Pj        V(r 2)j
        Here

                         (ri)o  =  T w,  (ri)j  =  R]:l /2,  1 <  j  <  J,
                         (r 2 ),  = 0 ,  0 < j <  J - l ,  (r 2 )j  =  T e .  (4.4.28)
         The  system  of  equations  given  by  Eq.  (4.4.27)  can  be  rewritten  as

                                            =  T\                         (4.4.29)
        where
                  A 0Co                                   r^oi         ~ r 0 l
                  Bi  A x  Ci                              Si           n

                         Bj  Aj  Cj               ,  6  =       ,  r  =
                                                           *j           r j
                                Bj-i  Aj-i   Cj-i
                                      Bj    Aj  J         . J.         _rj\
                                                          6
                                                                          (4.4.30)
   120   121   122   123   124   125   126   127   128   129   130