Page 207 - Computational Retinal Image Analysis
P. 207

1  Introduction  203







                  Inverse Polar   Transformation  Output            Up-Sample  Down-Sample  MaxPooling  DeConv <2x2, 2> Conv <1x1, 1>, with Sigmoid Conv <3x3, 1>, with ReLU  Copy and Merge  Multi-label Loss





                                                 +   400 x 400                 Side-Output + Multi-label
                   Multi-label Map                L (1)  s  L (2)  s  L (3)  s  L (4)  s





                                           2       2       2       2
                                           32             400 x 400  400 x 400  400 x 400
                                           32
                                                    64
                                           64     400 x 400  64
                   Segmentation                     128     128
                  M-Net                                   200 x 200  128


                                                            256      256

                                                                     256  512
                                                                  100 x 100
                   Transformation                                        50 x 50  512  U-Shape Convolutional Network
                  Polar                                              512




                                                                         256
                                                                     256    25 x 25
                  Optic Disc   Detection                    128      256  384


                                                            128

                                                    64      192
                                                    64
                                                    96
                                           32  32                                      Illustration of the M-Net framework.
                   Fundus Image            Input  3  64  3  128  3   256       Multi-scale


                                                                     3
                                                                                    FIG. 2
                                                                       50 x 50
                                                                100 x 100
                                                400 x 400
                                                        200 x 200
   202   203   204   205   206   207   208   209   210   211   212